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Abstract

A GPS-Integrated Fitness Tracking System with Exercise Classification and Personalized Health Recommendations is a mobile app
for increasing fitness through real-time activity tracking, exercise classification, and personalized health recommendations. Using GPS,
it monitors walking and running, calculates distance and calories burned. Machine learning model, leveraging the device’s camera,
classify exercises (e.g., push-ups, squats) in real-time, also it counts the exercises with the algorithm analyzing calories burns providing
immediate feedback. Also, with the data synchronization, with notifications delivering a daily health reminder. Addressing limitations of
existing apps such as limited real-time classification and generic guidance this system integrates tracking, machine learning, and dynamic
recommendations to promote sustained engagement and healthier lifestyles.
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1. Introduction

A healthy lifestyle has become a top priority in today’s
world, and smartphones play a major role in transforming
how physical activity is tracked. While mobile applications
can leverage sensors such as GPS and cameras to monitor
activities, most still lack real-time analysis and personalized
guidance [[1]]. To address these gaps, this project develops a
GPS-Integrated Fitness Tracking System, a mobile application
that combines activity tracking, exercise classification, and
personalized health recommendations.

The system uses GPS to track outdoor activities, calculating
distance, speed, and calories burned. Real-time exercise recog-
nition is performed via CNN, classifying exercises such as
push-ups and squats through the device camera and providing
immediate feedback to enhance engagement and efficiency.
Calories from exercise-specific MET values are combined
with GPS-derived movement to yield a more accurate total
energy expenditure [2]], [3]].

Unlike existing applications such as Apple Watch, Strava and
Fitbit, which focuse on metrics like steps or heart rate without
offering real-time exercise analysis or accurate calorie counts
during workouts [4]-[6], the proposed system integrates mul-
tiple functionalities into a single user-friendly platform.

1.1 Problem Statement

Many existing fitness applications focus on providing exer-
cises in animated forms and track only basic metrics such
as steps, distance, or calories burned [7[]. However, they
often lack real-time exercise analysis, repetition counting,
and personalized feedback [8]]. In addition, most applications
fail to integrate multiple features such as GPS tracking
for outdoor activities, exercise classification and repetition
counting, and personalized health suggestions into a single
integrated system, which leads to fragmented user experiences
[7], [9]. Such fragmentation across different functionalities

makes it difficult for users to maintain consistent progress
and effectively achieve their health goals.

1.2 Research Objectives

« To examine the effectiveness of a fine-tuned CNN model
in real-time exercise classification.

o To validate if GPS can correctly track distance, speed,
and calorie use with MET values.

« To investigate whether integrating exercise classification
with GPS-based movement data improves the accuracy
of calorie estimation compared to using either method
alone.

o To examine how combining real-time exercise data, GPS
tracking, and calorie estimation enables personalized
health feedback and recommendations that enhance user
motivation and progress.

1.3 Scope and Applications

« Real-Time Exercise Monitoring: Accurately identify and
track multiple exercise for immediate feedback and guid-
ance.

o GPS-Based Tracking: Measure distance, speed, and
movement calories.

e Calorie Estimation Integration: Combine exercise and
GPS movement data to improve total energy expenditure
accuracy.

« Personalized Health Feedback: Generate tailored sugges-
tions and motivational guidance to support user engage-
ment and fitness goals.

o Medical Application: Can be used to track patients’
locations in medical institutions.

2. Literature Review

2.1 Research on Fitness Tracking Applications

Fitness tracking applications have gained significant popular-
ity as tools for monitoring physical activities and supporting
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healthy lifestyles. Platforms such as Google’s Fit and Strava
enable users to track activities including walking, running,
and cycling, while also recording basic metrics such as step
count, distance covered, and heart rate when integrated with
wearable devices [1]], [5].

However, despite their widespread adoption, these applications
primarily rely on predefined activity metrics and offer limited
functionality for detailed, real-time exercise analysis. They
generally cannot accurately recognize or classify complex
body movements, such as squats, push-ups, or lunges, which
restricts their usefulness for comprehensive workout monitor-
ing. Additionally, the functional focus of different applications
is often segregated: some (e.g., Strava) prioritize GPS-based
activity tracking, while others (e.g., Google Fit) emphasize
general health monitoring. This lack of integration results in
fragmented user experiences, requiring individuals to utilize
multiple applications to track movements, analyze exercises,
and receive personalized feedback.

These limitations highlight a clear gap in the current fitness
technology landscape [[10].

2.2 Pose Estimation and Exercise Classification

Pose estimation is essential for exercise classification in
fitness applications, as it detects body keypoints and ana-
lyzes movements. Tools such as OpenPose [11] use Part
Affinity Fields to estimate multi-person 2D poses in real
time, accurately recognizing exercises like squats and push-
ups, but require high computational resources and perform
poorly under occlusions or low light [12]. MediaPipe Pose
[13] is optimized for mobile devices, detecting 33 keypoints
for exercises such as push-ups and lunges with real-time
efficiency, though its accuracy decreases for fast or angled
movements and it lacks built-in activity tracking or calorie
estimation [[14]. Classical computer vision approaches using
OpenCYV, including edge detection and Histogram of Oriented
Gradients (HOG) descriptors [15], [[16], can be adapted for
pose estimation but typically require extensive customization,
are less accurate for complex exercises, and are not ideal for
mobile real-time tracking [2].

Overall, these pose estimation tools provide foundational
capabilities for exercise recognition, but most lack integrated
features such as repetition counting or calorie tracking. This
limits their applicability in comprehensive fitness monitoring
applications, motivating the development of integrated sys-
tems that combine real-time pose estimation, exercise classi-
fication, and personalized recommendations [[15].

2.3 Integration of GPS in Fitness Applications

GPS-based fitness applications, such as Strava and Nike Run
Club, use GPS to track users’ outdoor movements, including
running, walking, and cycling. By recording consecutive coor-
dinates, these apps calculate metrics such as distance traveled,
average speed, and route maps [4], [17].

Strava, in particular, is widely used by runners and cyclists
due to its robust route-mapping features [4]. However, these
apps predominantly target outdoor activities, leaving a gap for

users who prefer indoor exercises or holistic fitness tracking.

2.4 Personalized Health Suggestions

Applications like MyFitnessPal provide static health recom-
mendations based on predefined algorithms that calculate
calorie intake and macronutrients. These suggestions lack
dynamic adaptability to real-time user activities like walking,
running, or exercise performance [18].

2.5 Local Storage for Data Management

Fitness applications manage user data using both local storage
and cloud services. For example, Fitbit stores structured
data such as steps, exercise duration, and calories locally
using SQLite, and simple key-value data like user preferences
using Shared Preferences [3], [[19], [20]. Additionally, Fitbit
supports cloud synchronization, allowing users to access their
records across multiple devices [5].

Also, popular fitness apps such as Strava, Fitbit and My-
FitnessPal typically separate activity tracking, exercise clas-
sification, and personalized recommendations into different
modules [[10], [18]]. They do not provide a fully integrated,
real-time system that combines local storage, GPS-tracked ac-
tivity, exercise recognition, and personalized health guidance.
In contrast, our system unifies these features into a single
platform, ensuring comprehensive, timely, and user-centered
fitness management.

2.6 Challenges in Existing Solutions

Despite significant advancements, existing fitness applications
face several challenges:

o Limited Real-Time Feedback: Few apps provide imme-
diate feedback during workouts, making it difficult for
users to correct their form [21]].

o Fragmented Features: Users often rely on multiple apps
to manage different aspects of their fitness journey [1].

These challenges highlight the need for an integrated solution
that combines real-time exercise detection, GPS tracking, and
personalized health insights.

3. Related Theory

This section presents the theoretical foundations for the pro-
posed system.

3.1 CNN Model

Convolutional Neural Networks (CNNSs) are central to visual
analysis tasks. The fundamental operation in a CNN is convo-
lution, which slides a filter over the input to produce a feature
map [22].

CNNss are a class of deep learning models designed to extract
hierarchical features from input images or video frames.
CNNSs extract features via convolutional, pooling, and fully
connected layers [23]], [24].

51



Journal of Himalaya College of Engineering, Volume: 2, Issue: 1

Dec 2025

3.2 MobileNetV2

MobileNetV2 is a lightweight CNN architecture tailored for
mobile devices, designed to overcome the high resource de-
mands of traditional CNNs. Researchers have used pretrained
MobileNetV2 (e.g., with ImageNet weights) and fine-tuned it
on exercise video datasets, achieving around 88% accuracy in
detecting workouts like squats and planks, with low latency
ideal for mobile inference [25]]. Its architecture includes two
key block types—stride=1 and stride=2—to extract features
efficiently [2].
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Figure 1. Convolutional Block used in the Mobile NetV2 Model

The network starts with the initial convolution layer.

o Initial Convolution Layer: Applies a 3x3 convolution
with 32 filters, stride 2, and ReL. U6 activation:

MobileNetV2 introduces depthwise separable convolutions
combined with linear bottlenecks and ReLU6 activation,
which significantly reduce computational cost while maintain-
ing accuracy. [2]].

4. Methodology

4.1 System Design

This section explains how the system components interact
with each other to achieve the desired functionality.

Use Case Diagram:

The use case diagram outlines the interactions between the
user and the application’s features.

The primary actor in the system is the User, who interacts
with the application to track fitness activities, receive health
recommendations, and manage their profile.

1) Data Flow Diagram (DFD Level 0)

Figure [3| illustrates the data flow between the user and the
system, showing how inputs from the user are processed and
how outputs are returned.

A GPS-INTEGRATED FITNESS TRACKING SYSTEM WITH
EXERCISE CLASSIFICATION AND PERSONALIZED HEALTH
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Figure 2. Use Case Diagram
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2) Data Flow Diagram (DFD Level 1)

The DFD Level 1 expands on Level O by breaking down the
central ”System” into its major internal processes, showing
how data flows between these processes, external entities, and
data stores. It provides a more detailed view of the system’s
operations while maintaining the same external entities as in
Level 0.
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Figure 4. DFD Level 1 Diagram
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3) Flowchart Diagram

The Flowchart Diagram visually represents the step-by-step
process flow within the application, helping to simplify the
understanding of system operations.

Do you have an account? o
Exercise o X
Analysis =

Display Real Time
Feedback

Figure 5. Flowchart Diagram

4.2 Basic System Architecture

Our system architecture is designed to integrate multiple
components to deliver real-time fitness tracking, exercise
detection, and personalized feedback.

Database

Notification
Service

Server
Request Queue

User Client
Exercise

Classification
(Camera)

Real-Time GPS
Tracking (Mobile)

Figure 6. Basic System Architecture

The User Client enables users to interact with the application.
The Server supports real-time sync and removes the need for
separate backend infrastructure. The Request Queue priori-
tizes tasks to maintain responsiveness. The Server handles
secure logins using Email/Password with support from custom
session management. The NoSQL Database stores profiles and
logs in a scalable JSON format ideal for real-time use. The
Notification Service uses Cloud Messaging, push alerts, and
Alarm Manager for timely updates. Exercise Classification
(Camera) enables real-time workout detection, and Real-Time
GPS Tracking (Mobile) provides live location, distance, and
calorie tracking.

4.3 Exercise Classification

To classify exercises in real time, we utilized a Convolutional
Neural Network (CNN) trained on a custom-built dataset. The
images were labeled based on folder structure and encoded
into Base64 format, then saved in a .csv file to streamline the
data pipeline.

1) Data Collection

The initial dataset was sourced from Kaggle [26]], consisting
of 208 Base64-encoded images. To increase the diversity and
robustness of the dataset, additional images were gathered

from stock platforms, such as Shutterstock, expanding the
dataset to 4,572 images, with 508 images per class across nine
exercise categories: Bent Over Row, Glute Bridge, Lunges,
Push-up, Chest Dips, Plank, Shoulder Press, Pull-up, and
Squat.

The images were processed as follows:

« Data Filtering: First of all, Image Conversion technique
was applied, the Base64-encoded images were decoded
and saved as JPEG files. After decoding, the images were
manually reviewed and cleaned, with erroneous images
being removed from the dataset.

o Labeling: Images were organized into folders corre-
sponding to each exercise class. We extracted only the
relevant images by selecting the exercise name and
then grouped them into the appropriate folder. In this
way, each image was labeled according to its exercise
category.

« Additional Data Sourcing: Images from stock image
websites like Shutterstock were also used to expand the
dataset, ensuring each exercise had 508 images. This led
to a final dataset of 4572 images.

The following preprocessing and augmentation techniques
were implemented:

o Brightness and Contrast Adjustment: Adjustments to
brightness and contrast were randomly applied to each
image.

« Flipping: The images were flipped horizontally for di-
versity.

« Data Generator: Data augmentation techniques such as
zooming, rotating, and adjusting brightness/contrast were
applied to create more varied and robust data.

2) Data Preprocessing

Sampling: Data sampling was done by reading from the CSV
file containing the image paths and labels. A random sampling
approach was employed to ensure that all images from the
dataset were used equally during training.

Label: bent over row Label: bent over row Label: bent over row Label: bent over row Label: bent over row

Figure 7. A Random Sample in Data Preprocessing

Image Preprocessing:

o Base64 Decoding: The Base64 images were decoded
and resized by maintaining the aspect ratio also ensuring
all images were converted to RGB format. This step is
crucial for handling the encoded image representations
efficiently and ensuring they are ready for further pro-
cessing, as demonstrated in the data_generator function.
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« Normalization: Images were normalized to a [0, 1] scale
using the formula: After converting the PIL image to a
NumPy array, the pixel values originally in the range
[0,255] for RGB channels are divided by 255.0 and this
scaling is mathematically expressed as:

Original Pixel Value ( 1 )

Normalized Pixel Value = 555.0

For compatibility with the standard pretrained Mo-
bileNetV2 feature extractor, images were further normal-
ized from the [0, 1] range to the [—1, +1] range, matching
the input distribution used during model training and
supporting stable and reliable feature extraction.

o Padding: For images that were resized to preserve their
aspect ratio, black padding was added to ensure that all
images were the target size of 224x224 pixels without
distorting exercise poses.

The full generator implementation, including batch processing
and label encoding.

3) Model Architecture

MobileNetV2, pretrained on ImageNet, was fine-tuned by
unfreezing its last 30 layers and adding custom layers: Global
Average Pooling, Batch Normalization, and Dense layers
(1024, 512, 9 units) with ReL.U activation, L2 regularization
(0.005), and Dropout (0.5). The output used softmax for
nine-class classification. The architecture was compiled with

categorical cross entropy loss and Adam optimizer (learning
rate: 0.00001).

Dense
Input shape: (None, 224, 224,3) | Output shape: (None, 7, 7, 1280) Input shape: (None, 512) | Output shape: (None, 9)
Dropout
Input shape: (None, 512) | Output shape: (None, 512)
Batch Normalization
Input shape: (None, 1024) | Output shape: (None, 512)
Input shape: (None, 1280) | Output shape: (None, 1280)

Dense Dropout

Global Average Pooling 2D

Input shape: (None, 7,7,1280) | Output shape: (None, 1280)

Input shape: (None, 1280) | Output shape: (None, 1024)

Input shape: (None, 1024) | Output shape: (None, 1024)

T

Figure 8. Fine-tuned MobileNetV2 architecture.

Figure [§] illustrates the fine-tuned model architecture used in
this study.

The ReLU (Rectified Linear Unit) activation function was
employed in the hidden Dense layers (1024 and 512 units) to
introduce nonlinearity.

ReLU outputs the input directly if positive, otherwise zero,
enabling the model to learn complex patterns efficiently while
mitigating the vanishing gradient problem common in deep
networks. [27].

The final layer used the Softmax activation function to
generate class probabilities for the nine exercises. Softmax
normalizes the output into a probability distribution, where

each value sums to 1, allowing the model to assign confidence
scores to each exercise class (e.g., Push-up: 0.9, Squat: 0.05)
[28]].

This facilitates multi-class classification and supports real-
time decision-making, where the highest probability deter-
mines the predicted exercise.

The model was compiled using the Adam optimizer with
a small learning rate, which adaptively balances past and
current gradients. Categorical crossentropy was used as the
loss function to penalize incorrect predictions, guiding the
model to improve exercise classification over time.

4) Train and Test Split

In our approach, the dataset is not divided into fixed training
and validation subsets by design. Two dynamic generators are
employed: one applies light augmentations for training, while
the other evaluates the same dataset with strong, unseen aug-
mentations. Both generators reshuffle the data at the start of
each epoch to produce randomized batches, ensuring exposure
to diverse transformations. Importantly, augmented samples
used for evaluation are never seen during training, allowing
the design to assess both generalization and robustness under
distributional shifts while maximizing data utilization.

5) Training

The model was fine-tuned by unfreezing the last 30 layers
of the base model and adding custom dense layers on top.
Training utilized separate generators for training, processing
4,572 images in batches of 32 over 50 epochs. Early stop-
ping (patience=5) and model checkpointing ensured optimal
performance.

Key training parameters included:

o Learning Rate: Set at 0.00001 to allow for gradual fine-
tuning of the model.

« Early Stopping: To avoid overfitting, early stopping was
used.

e Dropout: Dropout layers with a rate of 0.5 were added to
regularize the model. A dropout rate of 0.5 was found to
provide the optimal balance, reducing overfitting while
maintaining high validation accuracy at Epoch 50. In
our case, a 0.5 rate means that during each iteration,
50% of the neurons in the dropout layer were randomly
set to zero, ensuring robust learning without significantly
compromising the model’s learning capacity.

6) Testing and Evaluation

After training, the model’s performance was evaluated on the
validation dataset. The model achieved good training accuracy
and validation accuracy after 50 epochs. The performance
graphs is included below and the training result are as follows:

o Training Accuracy: 87.36%
« Validation Accuracy: 96.08%

These results demonstrate that the model performs well on
unseen data, indicating that the model is generalizing effec-
tively.

7) Deployment

The model was deployed using the following approach:
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Figure 9. Accuracy vs epoch graph

« Saved Model: After training, the model was saved in the
.keras format.

o Real-Time Testing: The trained model was tested using
real-time input. A base64 image was passed to the model,
and the prediction was made. In the Android app, the
.tflite model was integrated with TensorFlow Lite and
CameraX Core library to classify exercises from live
camera input.

o Prediction: The model outputs the predicted exercise
label using the label map provided.

The model was successfully able to predict the correct exercise
from the base64 image input.

Now, to calculate calories burned during specific exercises,
the system uses a custom Java method that combines exercise-
specific MET values (e.g., Push-up: 7.0, Squat: 5.0) with user
profile data (age, weight), logging results in the database.

Next, a delay of 500-800 ms is applied to ensure exercise
posture consistency before confirming a prediction. Detected
exercises (confidence greater or equals to 65%) are only con-
sidered valid if maintained across three consecutive frames. It
reduces erroneous classification spikes (e.g., false Push-up or
Squat detections).

Furthermore, exercises are classified in real time using a fine-
tuned MobileNetV2 model deployed via TensorFlow Lite in
the Android application. It captures video frames through
Camera, preprocessed into 224x224 RGB images, and en-
codes them as Base64 for model input. The model processes
these images, applying convolutional layers to detect spatial
features (e.g., body postures), and outputs probabilities for
nine exercise classes (e.g., Push-up, Squat) using Softmax,
selecting the highest probability as the prediction.

We have used Base64 encoding for image input to streamline
the data pipeline by converting images into a text-based format
that can be easily stored, transmitted, and processed within the
Android application. This approach ensures compatibility with
the model input requirements, facilitates efficient handling of
real-time camera frames, and simplifies integration

Finally, exercise type, repetitions, and duration are integrated
with MET and personal attributes to compute calories, which
are stored in user profiles to generate daily summaries. A

rules-based scheduler provides personalized alerts for missed
targets or inactivity, promoting engagement, healthier habits,
and goal attainment.

4.4 GPS Tracking and Real-Time Maps

The GPS tracking component monitors the user’s location in
real time, calculates distances using the Haversine formula,
and displays movement on an OpenStreetMap canvas.

1) Data Collection

Latitude and longitude coordinates are obtained from the
mobile device’s GPS sensor via Google Location Services.

2) Location Tracking

Coordinates are collected periodically to track movement
and update the user’s route in real time, supporting accu-
rate activity metrics such as distance and speed. Distances
between consecutive GPS coordinates were calculated using
the standard Haversine formula, which determines the great-
circle distance on a sphere based on latitude and longitude [3]].
This approach allows accurate estimation of distance traveled
for GPS-based tracking in real-world conditions.

The Haversine formula is used to calculate the distance
between two geographic points based on their latitude and
longitude.

3) Real-Time Mapping

e Map Integration: OpenStreetMap tiles are used as the
base layer, with user positions plotted in real-time.

e Multi-User Display: A canvas layer draws the user’s
movement path using GPS coordinates. Other users
within a defined radius (e.g., 5 km) are shown on the
map, fetched from Realtime Database.

4) Data Storage

GPS coordinates, distance traveled, time spent, and calories
burned are saved to the Database under the user’s unique ID.
And to store calorie values, we have used calorie calculation
which is based on MET (Metabolic Equivalent of Task)
values: Walking: 3.8 METs, Running: 8.0 METs.

Calories = M ET x Weight(kg) * Time(hours) (2)

To monitor user activity in real time, live GPS tracking is
employed using Google Location Services. The application
retrieves latitude and longitude coordinates at regular intervals
and calculates distance changes using the Haversine formula.
Based on calculated speed, movements are classified as walk-
ing (less than or equals to 6 km/h) or running (6-15 km/h).
These activity metrics including distance, calories burned, and
type of activity are stored daily in the database, allowing new
tracking to commence every 24 hours. This approach ensures
accurate monitoring of user movement and consistent logging
for analysis.

Calorie estimation from movement is achieved by processing
real-time GPS updates alongside user-specific information
such as weight and age. Distance and speed are calculated
to determine the activity type, and MET values are applied to
estimate energy expenditure. The resulting calorie values are
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formatted and stored with distance and activity type, providing
a reliable foundation for personalized fitness recommenda-
tions.

To provide a view of user energy expenditure, the system
integrates calories burned during exercises with those calcu-
lated from GPS-tracked movement. This combined approach
produces total daily calorie data, capturing both structured
exercises and routine physical activity. Such integration allows
for a comprehensive representation of overall energy output,
which is crucial for accurate feedback.

Based on the accumulated data, the system generates per-
sonalized health suggestions and notifications. Daily statistics
including steps, calories, distance, and total activity points
are used to create motivational messages and reminders.
Notifications are scheduled to encourage engagement, such
as prompting a user to take a short walk if step counts are
low.

4.5 Personalized Suggestions

In the proposed system, the personalized suggestions module
generates the best recommendations for users.

1) Data Collection

« User Profile: Collected during signup (name, age, weight)
and stored in database.

« Activity Data: Real-time data from exercise classification
and GPS tracking.

2) Points System

To quantify overall user activity, a points system is employed,
combining distance, repetitions, exercise duration, and calories
burned:

Distance

80
+ 2 - Exercise Reps

Total Points =

3

+ 5 - Exercise Minutes
Calories Burned

2
+ 10

Components:

« Distance (meters): 1 point per 80 meters.
« Exercise Reps: 2 points per repetition.
« Exercise Minutes: 5 points per minute.
o Calories Burned: 2 points per 10 calories.

3) Time-Based Suggestions

To promote optimal health and adherence to daily activity, the
system provides exercise prompts based on the user’s time of
day. This approach is grounded in circadian rhythm research
and principles of longevity. For instance, higher-intensity
exercises such as push-ups or squats are recommended in
the morning when energy levels and metabolic responsiveness
are typically higher, whereas lower-intensity or core-focused
exercises like planks are suggested in the evening to reduce
stress on the cardiovascular system.

These recommendations align with the findings of Sinclair and

LaPlante [29], who highlight the importance of timing and
regularity of physical activity in supporting metabolic health,
mitochondrial function, and cellular repair mechanisms. By
providing contextually appropriate prompts, the system en-
courages users to exercise at biologically favorable times,
potentially enhancing both compliance and long-term health
benefits.

4) Real-Time Notifications

The system delivers real-time feedback on user activity,
including calorie expenditure and personalized motivational
prompts. Drawing on longevity research, the system tailors
recommendations according to cumulative activity points.
Users with higher activity points receive messages encour-
aging the continuation of exercise intensity, whereas lower
activity scores trigger prompts to increase activity to sup-
port metabolic function and overall health. This approach is
informed by Sinclair’s principles of aging, emphasizing the
benefits of regular physical activity for cellular health and
lifespan [29].

4.6 User Signup and Personalization

During the user signup process, the application collects basic
details such as: Name, Age, Weight. This data is stored and
used for personalized fitness recommendations:

The data collected during signup is used to recommend
personalized goals, such as how many steps the user should
take per day or the optimal workout plan.

5. Results & Discussion

This section presents the results obtained from the imple-
mentation of system and provides an in-depth analysis of its
performance across its core components:

5.1 Exercise Classification

This section discusses the training outcomes and evaluation
results based on the 50-epoch training process conducted. The
selection of 50 training epochs was based on the model’s
convergence pattern: beyond roughly 40 epochs, improve-
ments in validation accuracy became minimal, and model
performance exhibited only minor fluctuations, indicating that
further training would provide limited benefit.

1) Model Performance

The training was performed using a batch size of 32 because
it gives a good middle ground between faster training and
stable updates to the model.

The training and validation results demonstrate that the Mo-
bileNetV2 model effectively learned exercise-specific features
from the custom dataset. Training accuracy progressively in-
creased from 11.96% to 87.36%, while training loss decreased
from 12.1982 to 7.5508, indicating successful adaptation of
pretrained weights to the new dataset and overcoming initial
misalignment and input variance. Validation accuracy showed
a sharper improvement, rising from 18.29% at Epoch 1 to
96.08% at Epoch 50, with validation loss decreasing from
11.2001 to 7.2678. Interestingly, validation accuracy consis-
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tently outpaced training accuracy after Epoch 10 (e.g., 60.26%
versus 42.91%), which can be attributed to regularization
strategies such as dropout (0.5), L2 weight decay (0.005), and
extensive data augmentation. These techniques mitigated the
learning of noisy or distorted training patterns while enabling
better generalization on unseen data.

We used L2 weight decay of 0.005 to avoid the model
memorizing the training data, as it helps keep the weights
smaller and more balanced.

Training and Validation Loss vs. Epochs

—e— Training Loss
12 —e— Validation Loss

Epoch

Figure 10. Training and validation loss vs. epochs

Figure [I0] shows a steady decline in both metrics, with vali-
dation loss converging faster, suggesting the model effectively
balanced learning and generalization.

Training and Validation Accuracy vs. Epochs

—e— Training Accuracy
Validation Accuracy

02

Epoch

Figure 11. Training and validation accuracy vs. epochs

Figure [9] further illustrates that validation accuracy reached
a plateau near 96%, while training accuracy increased more
gradually. This gap is due to regularization and augmentation,
which improved generalization rather than overfitting.

From a practical perspective, the strong generalization per-
formance suggests that the model can accurately classify
exercises across different users and contexts, even when envi-
ronmental factors such as lighting or camera angle vary. The
plateau in accuracy after around 40 epochs also indicates that
further training beyond 50 epochs would yield diminishing
returns, justifying the chosen training length as a balanced
compromise between performance and efficiency.

2) Evaluation Outcomes

The trained model was evaluated on the validation dataset and
deployed in the Android app for real-time testing:

o Quantitative Results: Final accuracies were 87.36%
(training) and 96.08% (validation), demonstrating robust
performance.

¢ Real-Time Performance: Integrated with TensorFlow Lite
and CameraX, the model successfully classified exercises
from live camera feeds. For example, a Base64-encoded
Push-up image yielded a predicted label of “pushup” with
high confidence (softmax output > 0.9), aligning with the
label map.

The confusion matrix shown below demonstrates a clear
assessment of the model’s performance.
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Figure 12. Confusion matrix

The confusion matrix reveals strong performance, with high
diagonal values indicating accurate predictions for most
classes. However, some classes, such as Push-up (474 cor-
rect, 26 misclassified as Plank) and Plank (467 correct, 31
misclassified as Push-up), show notable confusion, likely due
to similar body postures. This suggests that the model strug-
gles with distinguishing closely related exercises, particularly
under varying lighting or angles, reflecting a limitation in its
ability to generalize to subtle differences.

5.2 GPS Tracking and Real-Time Maps

This module tracks user movement using GPS, calculates
distances via the Haversine algorithm, and visualizes activity
on OpenStreetMap with a canvas overlay. Results are based
on real-world testing over a 24-hour period.

1) Results

The application accurately displays user location, updating
in real time as users walk or run, with a blue canvas path
illustrating the route taken. Distances between consecutive
GPS points are computed using the Haversine algorithm, and
results including time spent and estimated calories burned are
stored in the Realtime Database.
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For a baseline case, a 25-year-old user weighing 70 kg
completed a 1 km walk in 15 minutes (0.25 hours), resulting
in 66.5 kcal burned (3.8 METs x 70 kg x 0.25 h), aligning
with standard metabolic estimates.

To verify adaptability, a 24-year-old user weighing 48 kg
walking the same distance under identical conditions burned
45.6 kcal, demonstrating that the system appropriately scales
energy expenditure according to user-specific parameters.

Over 24-hour continuous usage, total movement was success-
fully aggregated, showing consistent values even after app
restarts; for instance, one test day logged 5.2 km total distance
with no loss of data integrity.

Additionally, markers for nearby users updated dynamically
within a 5 km radius, with minimal device synchronization
delays (less than equals to 5 seconds), confirming that the
multi-user component supports responsive group-tracking sce-
narios.

Table 1. Calorie Expenditure by Subject

Subject GPS(kcal) Exercise(kcal) Combined(kcal)
Subject 1 30 40 70
Subject 2 25 35 60
Subject 3 50 45 95
Subject 4 20 30 50

As shown in Table [I] combining GPS-based movement with
exercise classification increases calorie estimates by 70-90%
compared to using either method alone, providing a more
accurate measure of total energy expenditure, especially for
stationary activities.

5.3 Personalized Suggestions

The Personalized Suggestions Module generates tailored fit-
ness recommendations based on a points system, time-based
prompts, and real-time notifications, using data from exercise
classification and GPS tracking.

1) Results

Using the defined points system in Equation[3] the points were
calculated as total. For a test case (1 km walked, 10 push-ups,
15 exercise minutes, 100 calories burned), the result was:

Total Points = (1000/80) + (10x2) + (15x5) +
((100/10) x2) = 12.5 + 20 + 75 + 20 =~ 128

A second test case was also performed (2 km
walked, 20 push-ups, 10 exercise minutes, 200
calories burned), resulting in:

Total Points = (2000/80) + (20x2) + (10x5)
+ ((200/10) x2) = 25 + 40 + 50 + 40 ~ 155
Points and stats (steps, minutes, calories) were ac-
curately saved to database.

These multiple measurements confirm that the points system
consistently reflects user activity across different scenarios.
These points serve as the basis for personalized health rec-
ommendations, guiding users with tailored suggestions to im-

prove activity levels, calorie management, and overall fitness.

Aggregated results show high adherence to suggested exer-
cises (mean = 9.6/10) and effective engagement with notifica-
tions (mean response = 4.6/5). Users responding consistently
achieved higher points and burned more calories, demonstrat-
ing that real-time exercise classification, GPS tracking, and
calorie estimation provide actionable feedback that motivates
and supports measurable progress.

Table 2. Summary Statistics of Exercise Metrics

Metric Mean Std. Dev Min Max
Exercises Suggested 10.0 3.0 7 15
Exercises Completed 9.6 2.1 6 14
Total Reps 156 35 110 210
Calories Burned 344 80 250 470
Points Earned 128 22 100 160
Notifications Triggered 5.0 1.5 3 7
Notifications Responded 4.6 1.8 2 7

6. Conclusion

It advances personal health monitoring by integrating exercise
classification (96.08% accuracy), GPS tracking, and person-
alized suggestions. MobileNetV2 and TensorFlow Lite enable
efficient real-time analysis, while Firebase (NoSQL) ensures
scalable data management. The system fulfills objectives of
activity tracking, exercise classification, and tailored recom-
mendations, supporting beginners and enthusiasts. We demon-
strated that a fine-tuned CNN model can classify exercises
in real time, and that GPS can accurately track distance,
speed, and calories. The combination of exercise data and GPS
improves calorie estimation, and integrating this information
enables personalized feedback that facilitates user motivation
and progress tracking. Furthermore, this study demonstrates
the feasibility of implementing such a system on low-end
Android devices using only core camera libraries, highlighting
its practicality and accessibility.

Limitations include misclassifications under poor lighting,
resets of the user trace path on the real-time map, simplistic
suggestions, and the use of the same dataset for both training
and validation with data augmentation, which was employed
to maximize learning from limited data while providing a
consistent measure of generalization without holding out a
separate subset.

Future work includes fine-tuning additional layers to improve
robustness against variations in posture, camera angles, and
lighting, enhancing generalization across exercises. Addition-
ally, background activity tracking could enable continuous
monitoring, ensuring comprehensive data capture throughout
the day. Also, incorporating a more diverse datasets in future
iterations will further strengthen the model reliability.

Finally, personalization could be further enhanced by incor-
porating user-specific information, such as historical activity
patterns, preferences, and physiological characteristics. Utiliz-
ing this data would allow the system to provide more accurate,
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adaptive, and individualized health recommendations, thereby
strengthening the usefulness of the system’s recommenda-
tions. This project demonstrates the potential of integrated
fitness tracking, with scalable applications in personal and
medical contexts.
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