Journal of Himalaya College of Engineering, Vol. 2, Issue 1 Dec 2025

NEPTUN: Normalization for Romanized Nepali Sentiment
Analysis
Chandra Prakash Chaudahryl, Basanta Joshi2, Aman Shakya3, Santosh Giri**

1.2:3.4nstitute of Engineering, Tribhuvan University (TU), Lalitpur, Nepal
*Corresponding author: santoshgiri@pcampus.edu.np

Abstract

The growth of e-commerce has led to rise in user-generated reviews, many of which in Nepal are written in Romanized Nepali
a non-standard form with inconsistent spelling, grammar and code-switching with English. These irregularities challenge traditional
sentiment analysis methods. This study presents NEPTUN(NEpali Phonetic Translation-Based Unified Normalization), a novel module for
normalizing Romanized Nepali, NEPTUN uses phonetic transliteration to map Romanized words to Devnagari, verifies them via a Nepali
dictionary, and then back-transliterates them into standardized Romanized forms. It also applies frequency-based filtering to retain common
variants, improving consistency. While similar techniques exist for Romanized Hindi and Urdu, NEPTUN is the first tailored to Romanized
Nepali. Its effectiveness was tested using various sentiment classifiers- Logistic Regression, Naive Bayes, K-Nearest Neighbors, and BERT.
NEPTUN:-enhanced preprocessing improved model accuracy, with BERT achieving the highest at 87.56%. These results emphasize the

need for domain-specific preprocessing in low-resource language like Nepali.

Keywords: Romanize Nepali, Phonetic Normalization, Sentiment Analysis, NEPTUN, Text preprocessing

1. Introduction

With the rapid rise of e-commerce platforms, user-generated
product reviews have become a crucial source of customer
feedback. These reviews often reflect consumer sentiment
regarding product quality, delivery efficiency, and overall
satisfaction, offering valuable insights for both buyers and
sellers. Sentiment analysis, a widely used Natural Language
Processing (NLP) technique, enables the automated interpreta-
tion of such textual data to classify user opinions as positive,
negative, or neutral. While sentiment analysis has seen sig-
nificant success in high-resource languages, its effectiveness
diminishes when applied to low-resource and linguistically
diverse contexts. One such underexplored area is Romanized
Nepali [18]]language text written using the Roman script. This
form of text, common in social media and e-commerce plat-
forms, poses unique challenges due to inconsistent spellings
(e.g.ramro, ramroo, raamro), grammatical irregularities, and
frequent code-switching with English. These linguistic in-
consistencies hinder the performance of traditional sentiment
analysis models.

Although similar issues have been addressed in Romanized
Hindi and Urdu [[17]], [19] using phonetic normalization
techniques such as TERUN, these methods rely on language
specific rules and lexicons that do not generalize well to
Nepali. For example, TERUN’s reliance on Hindi dictio-
naries leads to misinterpretation of valid Nepali words like
ramro, which are absent in Hindi corpora. Moreover, widely
used phonetic algorithms such as Soundex and Metaphone
often over normalize semantically distinct words that are
phonetically similar, such as choto, chuddyo, and chodyo.
To address these challenges, we propose NEPTUN (NEpali
Phonetic Transliteration-Based Unified Normalization) a tai-
lored phonetic normalization module designed specifically for

Romanized Nepali. NEPTUN transliterates Romanized tokens
into Devanagari using phonetic rules, validates them against
a Nepali dictionary, and then back-transliterates them into
standardized Romanized forms. This reduces lexical variation,
enhances input consistency, and improves the performance of
downstream sentiment classifiers.

The originality of this work lies in the design of NEPTUN,
a normalization approach specifically tailored for Roman-
ized Nepali - a language variant that has received little to
no dedicated computaional treatment. Unlike prior phonetic
normalization system such as TERUN, which are adapted
from Hindi and rely heavily on language specific lexicons,
NEPTUN introduces rule-based phonetic mapping and dictio-
nary validation optimized for Nepali phonology and orthog-
raphy. The main goal of this study is to enhance sentiment
analysis on Romanized Nepali user reviews by addressing
language specific inconsistencies through NEPTUN. Specif-
ically, the proposed approach develops a dedicated phonetic
normalization pipeline, reduces lexical variation and improves
text consistency, and evaluates the impact of normalization on
multiple sentiment classification models, including Logistic
Regression, Naive Bayes, K-Nearest Neighbors(KNN) and
BERT. This integration of language-aware normalization and
sentiment modeling represents a novel contribution to low
resource language processing research.

2. Literature Review

Sentiment Analysis (SA) remains a core task in Natural
Language Processing (NLP), widely applied across domains
such as product reviews, political discourse, and financial
forecasting [9], [[15]. The granularity of SA tasks varies from
document-level and sentence-level classification to aspect-
based sentiment extraction offering both high-level and nu-

Article History:
Submission: 2025-06-11, Revision: 2025-10-28, Acceptance: 2025-11-17

19

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

anced interpretations of opinionated text [1]], [6]. While
early SA models were predominantly lexicon-based, recent
advances leverage machine learning and deep learning tech-
niques. Nevertheless, cross-domain and multilingual perfor-
mance remains inconsistent due to factors such as domain
shift, data sparsity, and language-specific characteristics [2],
(3]

In multilingual and low-resource contexts, text normalization
emerges as a critical preprocessing step especially for Roman-
ized scripts where nonstandard spelling, informal language,
and code switching are prevalent. In Roman Urdu, [10]
demonstrated improved performance using a Self-Attention
BiLSTM architecture, while [8]] introduced an unsupervised
phonetic clustering method to address lexical variability. [16]
synthesized various normalization techniques, underscoring
their importance in mitigating input noise and enhancing
model robustness.

Phonetic normalization techniques are particularly impactful
in Romanized and code-mixed settings, where inconsistent
spelling variations often degrade the performance of natural
language processing (NLP) systems. [[17] proposed a novel
technique called transliteration based Encoding for Roman
Hindi/Urdu text Normalization (TERUN), designed to address
lexical variability in Roman scripts. TERUN employs a three-
stage architecture: (i) a transliteration based encoder that gen-
erates hash codes for variant spellings, (ii) a filter module that
discards irrelevant or noisy encodings, and (iii) a hash code
ranker that selects the most contextually appropriate variant.
This framework facilitates robust normalization by effectively
ranking plausible spellings, thereby improving downstream
tasks such as sentiment classification and intent detection.

Similarly, [[19] address the linguistic challenges inherent in
code-mixed and low resource scenarios, where phonetic in-
consistencies often disrupt semantic interpretation. Their pro-
posed normalization pipeline emphasizes phonetic similarity
to map diverse orthographic forms to a unified represen-
tation. The approach includes a computationally efficient
normalization module that standardizes spelling variations
while preserving semantic integrity. Additionally, the authors
introduce a scalable data pipeline capable of generalizing
normalization across multiple languages in code-mixed data.
Empirical results demonstrate notable gains in downstream
applications like intent classification, slot-filling, and response
generation, underscoring the critical role of normalization
in enhancing NLP model performance in noisy, multilingual
environments.

Complementary research on noisy social media text has ex-
plored hybrid normalization pipelines. [12] segmented tokens
into phonetic blocks and applied machine translation for
normalization in short text like tweets and SMS. [[12]] proposed
a cognitively inspired model combining letter transforma-
tion, phonetic similarity, and visual priming. Meanwhile, [[11]
tackled named entity recognition in tweets using a semi-
supervised approach combining KNN pre-labeling with CRF
for sequential tagging.

Recent studies in low-resource NLP have increasingly focused

on improving normalization, adaptation, and data efficiency
for underrepresented languages. [4] conducted a survey of
NLP progress in Sino-Tibetan low-resource languages, identi-
fying normalization and data-centric strategies as essential for
model improvement. [?] evaluated sequence-to-sequence mod-
els for spoken language normalization of Slovenian, showing
that neural normalization notably improves processing of
dialectal and spontaneous speech. [22] investigated sentiment
analysis for Slovene, Croatian, and Slovak, demonstrating
that data augmentation combined with normalization enhances
sentiment classification accuracy in low-resource settings.
[21]] explored large language model adaptation for Ukrainian,
illustrating how prompt-based fine-tuning can significantly
advance named entity recognition in morphologically rich,
low-resource languages. Collectively, these works highlight
a shift toward integrating normalization, augmentation, and
efficient multilingual adaptation to strengthen NLP perfor-
mance in low-resource settings—yet few explicitly target
Romanized or informal scripts such as Romanized Nepali,
where normalization remains a core unmet challenge. Despite
advancements in Romanized text normalization across lan-
guages, work specific to Romanized Nepali remains sparse.
Singh et al.,, 2024 constructed an aspect-based sentiment
dataset for social media, while [18|] leveraged BERT for
Romanized Nepali ecommerce reviews. The ONRMD dataset
Anonymous, 2024 targets offensive language detection using
multilingual models. However, these studies primarily focus
on model performance rather than upstream preprocessing.

Critically, few efforts have explored phonetic or domain-
aware normalization techniques tailored to Romanized Nepali
particularly for informal ecommerce texts rife with spelling
inconsistencies, dialectal mixing, and domain-specific jargon.
This presents a clear research gap: the need for a systematic
normalization framework that addresses these linguistic chal-
lenges and integrates seamlessly into sentiment classification
pipelines for low-resource and morphologically rich languages
like Nepali.

3. Methodology

This chapter outlines the methodology adopted to enhance
sentiment analysis for Romanized Nepali reviews in the e-
commerce context. The approach addresses key challenges
such as inconsistent spellings, mixed-language usage, and
noisy data through structured data collection and preprocess-
ing.

3.1 Data Collection

Multiple datasets were used to support the normalization and
sentiment analysis tasks:

3.1.1 Sentiment Analysis Dataset

The primary dataset includes over 30,000 user generated
product reviews from Daraz, covering diverse categories like
electronics, fashion, and home appliances. Initial data was
obtained from prior research [18] and expanded. Irrelevant
or incomplete reviews were filtered out.

20

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

3.1.2 Filtered Dataset (Nepali Dictionary)

A frequency-based word list was derived from 39,000 cleaned
Nepali Wikipedia articles (sourced from Kaggle), resulting
in a vocabulary of 240,726 words. This list supports text
normalization by highlighting common transliterations and
linguistic variations.

3.1.3 Manually Annotated Romanized to Devanagari Map-
ping Dataset

To evaluate normalization accuracy, a gold standard dataset
of 1,000 Romanized Nepali words was manually mapped
to Devanagari. The words were extracted from user reviews
and annotated by three native speakers, with disagreements
resolved via adjudication.

3.2 Data Preprocessing

Effective preprocessing is crucial to clean and standardize
Romanized Nepali text for analysis. The steps include:

Data Remove Special Converting each -
. . N Emoji replacement
Collection Character & url review in lower case

Removal of Normalization Tokenization ‘
Stopwords Technique

Figure 1. Data Preprocessing Pipeline

Text Cleaning:

Irrelevant Content Removal: Regular expressions were used
to remove URLs, special characters, excessive punctuation,
typographic symbols, and unicode art that do not contribute
to sentiment.

Emoji Replacement: Sentiment-bearing emojis were replaced
with explicit tags:

« Positive emojis— positive emoji

« Negative emojis—negative emoji
Case Normalization: All text was converted to lowercase to
reduce redundancy due to inconsistent capitalization.
Tokenization
NLTK’s word tokenizer was used to segment reviews into
tokens, handling Romanized Nepali and mixed English-Nepali
content uniformly by relying on whitespace and punctuation-
based boundaries.
Stop word Removal

Both Nepali and English stop words were removed to reduce
noise, except for negation terms (e.g., not, don’t) which are
crucial for detecting sentiment polarity. Examples:

« Nepali: ma, timi, tapai, hami, yo, tyo
« English: a, about, above, after, again, against, all

The preprocessed text is then passed through the NEPTUN
normalization module before being used in sentiment classi-
fication.

3.3 NEPTUN (NEpali Phonetic Transliteration Based Uni-
fied Normalization)

3.3.1 Capture Code Mixing

The first step of the NEPTUN normalization module focuses
on identifying code-mixed tokens, specifically distinguishing
Romanized Nepali words from English words. To achieve
this, a WordNet based English dictionary is used to verify
whether a token belongs to the English language. If the
token is found in the dictionary, it is classified as English
and retained without modification. Tokens not recognized as
English are considered potential Romanized Nepali words
and are passed to the next stage of the NEPTUN module
for further normalization processing. Since the dataset used
in this research is code-mixed comprising both Romanized
Nepali and English tokens extracted from user reviews this
step ensures that English words are preserved while only
the Romanized Nepali tokens are normalized. This reflects
the natural linguistic blending common in online Nepali
communication.

3.3.2 Phonetic Transliteration to Devanagari

In NEPTUN’s second stage, Romanized Nepali tokens de-
tected during code-mixing are transliterated into Devanagari
using a phonetic approach. The Indic Transliteration Library
[14] is used for base transliteration, enhanced by NEPTUN’s
custom variation generator to handle inconsistent Romanized
spellings.

The variation generator applies the following steps:
Normalization Reduces repeated characters for consistency
while preserving phonetics.

Example: aaaa — aa

Phonetic Substitution Uses a variation map to account for
common vowel/consonant alternatives.

Examples: aa —a, aa sh — s, shh

Consonant Mapping Handles phonetic overlaps in Nepali
pronunciation.

Examples: chh — x, ch pha —fa

Expansion and Tokenization Splits tokens into subcompo-
nents, applies substitutions, and generates valid Romanized
variants.

Devanagari Conversion All variants are transliterated to
Devanagari using the ITRANS scheme.

Table 1. Example of Phonetic Normalization between Romanized and
Devanagari Variants of “Bigreko”

Word bigreko

[‘buigreeko’, ‘bigreeko’,
‘bigreko’, ‘biigreko’]

Romanized variations

Devanagari variations

3.3.3 Candidate Selection (Devanagari Phoneme)

After generating multiple phonetic transliterations, the NEP-
TUN module proceeds to select the most appropriate De-
vanagari variant for each Romanized token. This candidate
selection stage ensures that the final normalized output aligns

21

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

with commonly used and linguistically accurate Nepali words.

Reference Dataset Construction and Preprocessing

Due to the lack of a large-scale Nepali dictionary cor-
pus, NEPTUN builds its own reference dataset from Nepali
Wikipedia articles. These articles are cleaned by removing
Latin characters, numbers, special symbols, and Devanagari-
specific punctuation, retaining only Devanagari script and
spaces. Words are tokenized using space-based segmentation
to preserve integrity.

Word Frequency Dictionary Generation

Text from multiple Wikipedia files is processed using Count
Vectorizer to compute word frequencies. The resulting dictio-
nary is sorted by frequency, prioritizing common words.

Table 2. Example of Devanagari Word Frequency Dictionary Generated
from Nepali Wikipedia Corpus

Word

Frequency Count

71,188

40,289

38,886

29,268

%%’ﬂv@l"*

28315

Dataset Significance

The reference dataset improves transliteration accuracy by:
« Reflecting real-world language use.
o Supporting statistical candidate selection.
« Filtering out rare or incorrect words.

Feature Extraction and Similarity Computation

Candidate and dictionary words are vectorized using
character-level TF-IDF (bigrams to four grams). Cosine sim-
ilarity scores are computed to quantify phonetic closeness.

Best Match Selection

The candidate with the highest similarity score is selected as
the normalized output.

Example: bigreko

Table 3. Example of Candidate Selection Based on TF-IDF Similarity
Scores

Word Devanagari Dictionary | Score
[CEEINEEC 10
dERr | SEe 10
faaeer | foaft 0.85
defer | SRS 0.66

3.3.4 Back-Transliteration to Standardized Romanized
Nepali

After converting tokens to Devanagari, NEPTUN performs
back-transliteration to obtain consistent Romanized Nepali
forms. This step addresses the variability in Romanized
spellings and ensures uniform representation for downstream
tasks. For example, the word “ramro” may appear as “raamro,”
“ramrooo,” or “ramro.” NEPTUN maps each Devanagari token
to its Romanized variants and selects the most frequent form
based on real world usage from a sentiment dataset.

Process Overview

o Token Mapping: Each Devanagari word is associated
with all observed Romanized variants.

o Frequency Counting: The usage frequency of each variant
is calculated.

e Form Selection: The variant with the highest frequency
is chosen as the standardized form.

Example

o Devanagari: “ramro”

e Variants: ‘raamro’, ‘'ramrooo’, ‘ramroooo’, ‘ramro’

o Frequencies: ‘raamro’: 16, 'ramrooo’: 3, ‘ramroooo’: 2,
ramro’: 1159

o Standardized: ramro

This approach ensures all Romanized forms converge to a
single, frequent, and normalized version, enabling consistent
input for downstream tasks. To facilitate reproducibility, the
source code for the NEPTUN normalization pipeline and sen-
timent analysis experiments is available at NEPTUN GitHub
Repository.

Phonetic
Raw Capture Code . .
- Transliteration to
Data Mixing .
Devanagari

Back-Transliteration
to Standard
Romanized Nepali

Candidate
Selection
(Devanagari)

Output Candidate Selection
Data (Romanized Phoneme)

Figure 2. NEPTUN Normalization

3.4 Integration of NEPTUN with sentiment Analysis)

After normalization, the standardized Romanized Nepali text
is used as input for sentiment classification. The integration of
NEPTUN into Sentiment analysis pipeline ensures consistent
token representation and improved lexical matching with
pre-trained embbeddings. This process minimizes variations
caused by inconsistent spellings and mixed-language content,
allowing sentiment models such as Logistic Regression, Naive
Bayes, KNN, and BERT to perform more effectively.

To demonstrate how NEPTUN normalization integrates into
the sentiment analysis workflow, three sample reviews from
the Daraz dataset are processed step-by-step. The examples
illustrate how NEPTUN handles code-mixed text, applies
phonetic transliteration to Devanagari, performs candidate
selection, and finally back-transliterates tokens to standardized
Romanized Nepali before sentiment classification.

22

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

Table 4. : Illustration of NEPTUN Normalization and Sentiment Analysis
Pipeline

Step Example Flow
1. Input .
Reviews (Code- . Dhe1_'21 famiin chha
Mixed) - Color mi mitho ramroo xa
- Ekdam ramro chha thank vou
o 'i;){];e(—zf.};zdatlon Identified Romamized Tokens
Mixi & -["Dherai”, “ramro”, "chha"]
D .Eteuntig - ["mitho”, “ramroon”, "xa"]
o - ["ekdam”, "ramra”, "chha”]
Example Mappings:
3. Phonetic - dherai — [*RTE", ‘GNTS", “OY, R1]
Transliteration - ramro — [T, TA]

to Devanagari - chha — [T, BT
- mitho — [*HIGT, “fHor] - xa — [T, BT
- ekdam — [‘UGEH", ‘AT, “UaslE’]

Top Matched Words (Examples):
4. cimd@date - dherai — 8%
Selection
(Devanagari - ramro — I
Phoneme) -chha— &
-mitho — f#a"
- gkdam — UdgH
T Soxk Final Normalized Tokens:
ransliteration . S R ”
t Standardize - {"dherai’: 1} — dherai - {‘ramro’: 2, ‘ramrooo’:
Romanized I 2
Nopali - {*chha’: 2, "xa’: 1} — chha
D - {*mitho™: 1} — mitho
- {*ekdam’: 1} — ekdam
Nc?a:nFlanlliazle 4 - Dherai ramro chha
G - Mitho ramro chha
i - Ekdam ramro chha

After normalization, the standardized Romanized Nepali text
is vectorized using pre-trained embeddings and passed into
sentiment classifiers. The normalization ensures uniform token
representation, reducing noise from spelling variations and
code-mixing. As a result, models like Logistic Regression,
Naive Bayes, KNN, and BERT achieve improved accuracy
and stability compared to unnormalized input.

3.5 Evaluation of Normalization Impact Sentiment Anal-
ysis)

To evaluate the impact of NEPTUN normalization, we com-
pare sentiment classification performance under two prepro-
cessing settings: Standard Preprocessing (SP) and NEPTUN
Preprocessing (NP). Four models are used for evaluation: Lo-
gistic Regression, Naive Bayes, K-Nearest Neighbors (KNN),
and BERT, selected for their diversity in handling text classi-
fication.

Model Descriptions

« Logistic Regression: A robust baseline for binary clas-
sification.

« Naive Bayes: Effective on noisy, small datasets due to
its probabilistic nature.

o KNN: A non-parametric method that captures local pat-
terns.

o BERT: A pre-trained transformer offering deep contex-
tual understanding.

Preprocessing Settings

Standard Preprocessing (SP) Applies generic English NLP
techniques such as text cleaning, lemmatization, and stopword
removal.

NEPTUN Preprocessing (NP) Extends SP by incorporating
NEPTUN normalization and a Romanized Nepali stopword
list to handle phonetic variation, code-switching, and non-
standard spellings.

Comparative Evaluation Models are evaluated using accu-
racy, precision, recall, and Fl-score. This comparison reveals
the effectiveness of NEPTUN in improving sentiment analysis
for Romanized Nepali text.

Data Collection

A 4

Text Cleaning

Y Y

Standard NEPTUN
Preprocessing Preprocessing

Y

Model training

Y

Evaluation

Figure 3. System Flow Diagram

4. Results and Discussion

This section presents a focused analysis of how existing
phonetic algorithms handle Romanized Nepali text, highlight-
ing their limitations in sentiment analysis tasks. A manually
annotated dataset was developed to map frequently used
Romanized words to standard Devanagari forms, ensuring
semantic consistency during evaluation

4.1 Data Annotation for Phonetic Evaluation)

A dataset was created by three linguistically trained native
speakers to align Romanized Nepali words with their correct

23

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

Devanagari counterparts. Annotation guidelines emphasized
semantic equivalence over surface-level similarity. For in-
stance, raamrai, ramra, and ramro were grouped together un-
der the root form ramro (good), whereas phonetically similar
but semantically different words were kept distinct.

Table 5. Example of Manually Annotated Romanized—Devanagari Word
Pairs for Phonetic Evaluation

Words Devanagari g::::a;:::::
raamrai hyp=) Rar=11

raamro THT TTET
bigriyeko | farf@Iu=r fararmT
fohor HIgT BrET

xodyo FIED) oi=ar

Manual cross-verification ensured quality, and disagreements
were resolved by a third annotator using predefined guidelines.

4.1.1 Limitations of Existing Phonetic Algorithms on
Romanized Nepali

Soundex

Soundex, designed for English, performs overgeneralized
matching on Romanized Nepali. While it effectively normal-
izes spelling variants (e.g., ramro, ramra, raamrai—R56), it
fails semantically:

o Incorrect Merging: manparyo (liked) and manparyena
(did not like) are both encoded as M516, despite con-
veying opposite sentiments.

o False Separation: Synonyms like foto and photo are
assigned different codes (F3 vs. P3).

Double Metaphone

Although more flexible than Soundex, Double Metaphone still
struggles with Romanized Nepali:

¢ Incorrect Grouping: damiii (awesome) and daam (price)
share the same code (TM) despite semantic differences.

« Inconsistent Normalization: chhaina, xaina, and xhaina
(all meaning ”is not”) are inconsistently mapped, missing
semantically identical groupings.

o Accurate Distinction: It does, however, correctly dis-
tinguish some sentiment pairs, like manparyo vs. Man-
paryena.

Both Soundex and Double Metaphone suffer from semantic
blind spots in Romanized Nepali due to their English-centric
design. These issues motivate the need for a context-aware,
dictionary based approach like our proposed method, NEP-
TUN, which ensures semantic fidelity through Devanagari
mapping.

4.1.2 Advantages of NEPTUN over Existing Phonetic
Algorithms NEPTUN is specifically designed for Romanized
Nepali, offering advantages over general purpose phonetic al-
gorithms like Soundex and Double Metaphone. It incorporates

Table 6. Illustration of Soundex Collisions and Misclassifications in
Romanized Nepali Words

Soundex Romanize Words waanagan
Words
s [*damiii’,’dhanna’, | [EHT, o=,
i ‘daam’, “diyena’] | <z, fET]
[*'manparyena’, [FARA,
M516 : :
‘manparyo’] FATES]
H535 [‘hudaina’, [§'&7|'
o *handim’] i
w5 [‘lutya’, “lida’, [Tj‘,—e—' ‘ferer,
‘lyauda’] FAT3ET]
[*khojeko’, (@,
K2 ‘khassai’, ‘kesh’, | ‘WIEH, ‘&,
‘khusi’] g]

Table 7. Illustration of Double Metaphone Groupings and Misclassifications
on Romanized Nepali Words

Double Romanize Devanagari
Metaphone | Words Words
™ [*damiii’, ‘daam’] | [‘GTHT", ‘GTH]
. Fluty’, Clida’, | [T, <fomm,
‘lyauda’] HEC|
- [‘ghas’, ‘kasso’, | [HF. FEED,
KS . S -
‘khassai’, ‘khusi’] | «greg.]
[‘sayad’, ‘sutae’, [2 ‘Eﬁ '
ST ‘xodyo’, ‘sadhai’, ‘m', T,
‘sodda’ g :
] T]
. [‘chodyo’, 'choto', [TiZar, B,
‘chutyo’. ‘chitac’] | gy, 5]

linguistic rules, phonetic variation mapping, and dictionary
validation to robustly normalize informal and inconsistent
spellings.

Unlike traditional methods, NEPTUN handles noisy Roman-
ized inputs, filters out English words in code-mixed sentences
using WordNet, and validates candidates against a Nepali
lexicon to avoid semantically incorrect merges. This approach
significantly reduces phonetic collisions and improves normal-
ization accuracy.

NEPTUN in Action: As shown in Table 8, NEPTUN effec-

24

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

tively generates phonetic variants, selects correct standardized
forms, and distinguishes between semantically distinct words
(e.g., “ramro” vs. “ramrai”). It accurately normalizes informal
variants without losing meaning, ensuring linguistic integrity
across diverse input forms. Table 8: Illustration of NEPTUN’s
Normalization Process for Romanized Nepali Word Variants

Table 8. Illustration of NEPTUN’s Normalization Process for Romanized
Nepali Word Variants

Devanagari , Normalize
. = Romanize Words ,
Words Word
[‘raamro’, ‘ramroo’,
Al 2 ;5 ; ramro
‘ramroooo’, ‘ramro’]
[‘ramrai’, ‘ramrai’, ,
TI'# z ; ramrai
‘ramrae’]
[‘daaami’, ‘daami’, .
CAL1 : G dami
‘dammi’, ‘damiii’]
[‘chhaina’, ‘xaena’, ;
& 2 xaina
‘Xainw’, ‘xainaa’]
Tl [‘phata’, ‘fata’] phata

NEPTUN’s precision in normalization enables future enhance-
ments in morphological and lemmatization tasks.

4.1.3 Error Analysis and Limitations of NEPTUN

While NEPTUN improves normalization for Romanized
Nepali, a few limitations remain:

« Limited Lexicon: Due to the absence of a comprehensive
Nepali dictionary, some valid words (e.g. bikash) may be
wrongly discarded during validation.

« Variant Explosion in Long Tokens: Long or compound
words like “hajuuraaharuulee” produce many phonetic
variants, increasing computational load and reducing
selection accuracy.

« Phonetic Ambiguity: Words with similar sounds (e.g.
”xoina” vs. “xaina”) can cause confusion if phonetic
mappings are applied too broadly, leading to incorrect
normalizations.

Phonetic Ambiguity: Words with similar sounds (e.g., ”xoina”
vs. “xaina”) can cause confusion if phonetic mappings are
applied too broadly, leading to incorrect normalizations.

4.1.4 Comparative Phonetic Accuracy (Summary)

To assess normalization performance, we used a manually
annotated Romanized-to-Devanagari dataset and computed
phonetic accuracy as:

Phonetic Accuracy= (Number of Correctly Normalized
Pairs)/(Total Number of Evaluated Pairs) x 100

Only exact matches with the gold-standard Devanagari rep-
resentations without semantic drift were considered correct.
Mappings causing semantic collisions were excluded from
correct counts.

NEPTUN outperformed baseline phonetic algorithms by in-
corporating Nepali specific phoneme mapping, lexicon valida-

Table 9. Phonetic Accuracy Comparison

Method Phonetic Accuracy
Soundex 52.58%
Double Metaphone 65.00%
NEPTUN 73.00%

tion, and real world frequency based variant handling, making
it more reliable for downstream NLP applications.

4.2 Sentiment Categorization and Dataset Statistics

The sentiment dataset described in section 3.3.1 (Daraz re-
views; [[18]) was used for model development and evaluation.
An initial corpus of 34,438 Romanized Nepali product reviews
was collected, covering categories such as electronics, fashion,
and home appliances. After removing empty, placeholder, and
Devanagari-scripted entries, the dataset was reduced to 16,439
valid reviews.

Labeling Approach:

Sentiment labels were assigned using a hybrid rating—text
heuristic. Reviews were first categorized based on star ratings,
and then cross-validated with sentiment-indicative keywords
(e.g., “ramro xa”, “not working”, “thikai xa”). In cases where
the star rating conflicted with the textual sentiment, the
reviews were manually reviewed and corrected to ensure label
accuracy. Preprocessing steps included tokenization, lower
casing, and stop word removal. For traditional classifiers,
unigram and bigram TF-IDF features were extracted, while
BERT used contextual embeddings.

Final Sentiment Distribution:

After data cleaning and labeling, a total of 16,076 valid
reviews were retained for sentiment analysis. Among them,
12,141 reviews were positive, 2,887 were negative, and 1,048
were neutral.

The distribution of sentiment categories is summarized in
Table 10, while Figure 4 presents the corresponding visual
representation in the form of a pie chart. The table provides the
exact counts and proportions, ensuring transparency in how
the dataset was used for performance evaluation.

Table 10. Sentiment Distribution in the Final Dataset.

Sentiment Count Percentage
Positive 12,141 75.5%
Negative 2,887 17.96%
Neutral 1,048 6.52%

4.3 Experimental Evaluation Setup

To evaluate the effectiveness of the proposed sentiment clas-
sification methods, the processed dataset of 16,076 labeled
reviews was divided into training (80%) and testing (20%)
subsets. The following classifiers were trained and evalu-
ated: Logistic Regression, Naive Bayes, K-Nearest Neighbors
(KNN), and BERT. Feature extraction was based on unigram
and bigram TF-IDF representations for traditional classifiers,
while BERT utilized contextual embeddings. Model perfor-
mance was assessed using Accuracy, Precision, Recall, and

25

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

Positive

Neutral

Negative

Figure 4. Pie Chart Illustrating the Sentiment Distribution Across the Final
Dataset.

Fl-score. Additionally, a confusion matrix was generated for
each classifier to visualize correctly and incorrectly predicted
sentiment categories, computed by comparing model outputs
against the manually verified ground-truth labels.

4.4 Impact of NEPTUN Normalization on Sentiment
Analysis Performance

In this phase of our experiment, we evaluated the impact
of normalization techniques on sentiment classification for
Romanized Nepali reviews by fine-tuning and training dif-
ferent models, including Logistic Regression, Naive Bayes, ,
K-Nearest Neighbors (KNN) and BERT. Two training config-
urations were considered: (i) NEPTUN Preprocessing (NP),
which includes phonetic normalization, stopword removal, and
enhanced text normalization tailored for Romanized Nepali;
and (ii) Standard Preprocessing (SP), which applies con-
ventional English preprocessing functions without phonetic
enhancements. The models were evaluated based on Accuracy,
Precision, Recall, and F1 score. The results are summarized
in Table 11.

Table 11. Performance Comparison of Different Models under NEPTUN
and Standard Preprocessing

Model Scenario Accuracy Precision Recall F1-Score
Logistic NP 0.8341 0.8184 0.8341 0.7977
Regression SP 0.8323 0.8158 0.8323 0.7954
: NP 0.8126 0.7889 0.8126 0.7918
BermouliNg SP 0.8130 07917 | 08130 | 0.7929
KNeighbors NP 0.8141 0.7915 0.8141 0.7806
Classifier SP 0.8093 0.7835 0.8093 0.7753
NP 0.8756 0.8688 0.8756 0.8703
BERT SP 0.8731 0.8615 0.8731 0.8641

4.4.1 Quantitative and Statistical Analysis

The impact of NEPTUN normalization was evident across
most models, as seen from the improvements in classifica-
tion performance. Logistic Regression demonstrated a slight
increase in all four evaluation metrics under the NEPTUN
pipeline, suggesting that enhanced preprocessing contributes

to more effective feature representation. While Bernoulli
Naive Bayes performed marginally better with standard pre-
processing in terms of accuracy, the differences across all met-
rics were negligible, indicating that normalization had limited
influence on models heavily reliant on binary word presence.
For K-Nearest Neighbors, the benefits of NEPTUN were
more pronounced. Improved accuracy, precision, and recall
suggest that phonetic normalization reduces lexical variation,
enhancing token consistency and thus benefiting distance-
based models. BERT, as expected, achieved the highest overall
performance in both preprocessing settings. The slight but
consistent improvement with NEPTUN highlights the value of
structured input in enhancing deep learning models’ semantic
understanding.

4.4.2 Visual Comparison of Model Performance To visually
contrast the impact of the two preprocessing approaches
across different models, we present a histogram that compares
Accuracy, Precision, Recall, and F1-Score for each configura-
tion. This visualization helps identify performance trends and
reveals which models benefit the most from normalization.

ase

fom

080

ot

076
= e i BeRr S

Figure 5. Histogram Comparing Classification Performance of Different
Models under NEPTUN (NP) and Standard (SP) Preprocessing.

4.4.3 Confusion Matrix-Based Error Analysis To further
investigate the classification behavior of the best-performing
model, we present confusion matrices for BERT under both
NEPTUN (NP) and Standard Preprocessing (SP) configu-
rations. These matrices illustrate how the model performs
across the sentiment classes—positive, neutral, and nega-
tive—highlighting patterns in misclassification.

Under Standard Preprocessing, the model exhibits noticeable
confusion between sentiment classes, particularly between
negative and positive, as well as difficulty in accurately
identifying neutral sentiments. This is a common challenge in
Romanized Nepali due to inconsistent spellings and informal
expressions that hinder precise tokenization and semantic
interpretation.

With NEPTUN preprocessing, these ambiguities are signif-
icantly reduced. The model demonstrates clearer separation
between sentiment categories and fewer misclassifications,
especially in the neutral class. This suggests that NEPTUN’s
normalization strategy improves the consistency and clarity of
input text, enhancing the model’s ability to capture sentiment
cues more effectively.

Overall, the confusion matrices reveal that NEPTUN prepro-

cessing contributes to more accurate and balanced sentiment
classification by addressing the inherent noise and variability

26

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

in Romanized Nepali text.

C(_:nf_t._l;iu_n Matrix

1600
Negative 376 15 42 1400
1200
T 1000
=}
2 Meutral 43 37 77
£ F 800
E
600
400
Positive 106 12
200
Hegative Neutral Positive
Predicted label
Confusion Matrix
1600
Negative 366 11 56 1400
1200
T 1000
&
o MNeutral 4 39 35 83
2 BOD
600
400
Positive 4 Ou 20
200
Negative Neutral Positive

Predicted label I

Figure 6. Confusion Matrices Showing Classification Performance of BERT
under NEPTUN (top) and Standard (bottom) Preprocessing Configurations.

4.4.3.1 Analysis of Misclassified Examples To better under-
stand sources of misclassification, we analyzed false positive
predictions from the BERT model under both preprocessing
configurations. Table 12 shows representative examples and
brief explanations of the observed contradictions.

Table 12. Performance Comparison of Different Models under NEPTUN
and Standard Preprocessing

Text True Pred Reason
“Product rai look . .
S SOCHCLTRINEEL REYD 00 Mixed sentiment—
like cheap plastic material 1 " i
. o Negative | Positive | positive start followed by
paisa aanusar kassal ramro 2
% negative clause.
lagena H
“thau red light problem xa
first day dekhinai ramro xa Conflicting opinions:
taar haru alikati touch garyo . model fails to balance
: 7 Neutral | Positive R g
vane light bigrinxa taar positive and negative
chahi not good last ramrai cues.
ca use care”
e] Contrastive “bt” softens
ramro xa bt small raix " :]
X s Neutral | Positive | praise; model ignores
vaneko vanda o] L
dissatisfaction cue.
good pl‘olduct jacket cha!n Neutral | Positive Pralsf?. followed by defect
bad material replaces chain mention; negative part
single use” dominates interpretation.

False positives mainly stem from mixed sentiments, con-
trastive connectives (e.g., but, tara), and ambiguous contextual
modifiers. Although NEPTUN normalization enhances lexical
consistency, deeper discourse cues and implicit contrasts re-
main difficult for models to interpret accurately.

4.4.4 Qualitative Analysis Normalization through the NEP-
TUN pipeline played a critical role in reducing ambiguity
in Romanized Nepali text, particularly where multiple vari-
ations of the same word are common (e.g., ramro, ram-
rooo). By mapping such variants to a canonical form, the
NEPTUN approach improved token consistency, which sig-
nificantly helped models like KNN and Logistic Regression.
Furthermore, phonetic normalization enabled better handling
of variant spellings such as chhain and xain, thus reducing
feature sparsity and enhancing classification consistency. Deep
models like BERT particularly benefited from the semantic
clarity provided by normalized input, allowing them to make
more accurate sentiment predictions—for instance, correctly
interpreting expressions like thikai cha as neutral sentiment. In
contrast, BernoulliNB did not exhibit significant gains, likely
due to its simplistic feature independence assumptions and
limited sensitivity to nuanced input transformations. Overall,
NEPTUN preprocessing proved most beneficial for models
sensitive to word forms, as it reduces lexical inconsisten-
cies and improves input quality. The proposed NEPTUN
normalization framework significantly improved sentiment
classification performance across all models. For example,
BERT achieved an accuracy of 87.56% and an Fl-score
of 0.87, demonstrating that language-specific preprocessing
enhances both precision and interpretability for Romanized
Nepali sentiment analysis.

5. Conclusion

The experimental results reveal that NEPTUN Preprocessing
(NP) offers consistent improvements in sentiment classifi-
cation for Romanized Nepali text across multiple models.
While the performance gains over Standard Preprocessing
(SP) are sometimes marginal in terms of accuracy, NP no-
tably enhances recall and F1-score, indicating its strength
in handling linguistic variability common in informal user-
generated content. A key implementation uniqueness of NP
lies in its integration of a phonetic translation pipeline that
is specifically tuned for the linguistic patterns of Romanized
Nepali. Unlike general phonetic algorithms such as Soundex
or Double Metaphone, which are often overly aggressive and
can introduce semantic ambiguity by conflating phonetically
similar but semantically distinct terms, NP combines phonetic
normalization with dictionary-based validation. This approach
helps retain semantic integrity while reducing lexical noise—a
critical advantage for low-resource languages lacking stan-
dardized orthography. Furthermore, NP demonstrates its utility
across both classical and deep learning models. Particularly
in models like BERT and KNN, the preprocessing improves
token consistency and reduces sparsity by resolving phonetic
and orthographic variations. Looking ahead, NEPTUN can
be further enhanced through the integration of morphologi-

27

Journal of Himalaya College of Engineering, Vol. 2, Issue 1

Dec 2025

cal analysis and custom stemming or lemmatization tailored
for Romanized Nepali. These additions would allow for
deeper syntactic and semantic normalization, offering even
more robust input representations for downstream NLP tasks.
Optimized tokenization strategies and broader coverage of
spelling variants also represent promising directions for future
research. In summary, NEPTUN provides a linguistically
informed, domain-specific preprocessing framework that sig-
nificantly enhances sentiment analysis performance in noisy,
phonetic rich, Romanized text settings marking a notable
contribution toward NLP tools for under-resourced languages.

Quantitatively, the NEPTUN preprocessing pipeline achieved
measurable improvements across all evaluated models. For in-
stance, BERT attained an accuracy of 87.56% and an F1-score
of 0.87 under NEPTUN preprocessing compared to 87.31%
and 0.86 with standard preprocessing. Similarly, traditional
models such as Logistic Regression and KNN showed gains of
0.3-0.5% in F1-score, confirming the statistical effectiveness
of NEPTUN for Romanized Nepali sentiment analysis.

In summary, NEPTUN provides a linguistically informed,
domain-specific preprocessing framework that significantly
enhances sentiment analysis performance in noisy, phonetic-
rich, Romanized text settings marking a notable contribution
toward NLP tools for under-resourced languages.

References

[1] B. Narayanaswamy and G. Reddy, “Exploiting BERT and RoBERTa to
improve performance for aspect based sentiment analysis,” 2021.

[2] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms
and applications: A survey,” Ain Shams Engineering Journal, pp. 1093—
1113, 2014, Elsevier.

[3] Anonymous, “Benchmarking Language Models for Offensive Sentences
Classification in Offensive Nepali Roman Multi-Label Dataset,” submit-
ted to ACL Rolling Review, 2024.

[4] S. Liu and M. Best, “A survey of NLP progress in Sino-Tibetan low-
resource languages,” in Proc. NAACL-HLT, 2025.

[5] B. Chandio et al., “Sentiment analysis of Roman Urdu on e-commerce
reviews using machine learning,” 2022.

[6] Z. Toh and J. Su, “NLANGP at SemEval-2016 Task 5: Improving
aspect-based sentiment analysis using neural network features,” in Proc.
SemEval-2016, San Diego, CA, 2016.

[71 O. M. Singh, B. K. Bal, S. Timilsina, and A. Joshi, “Aspect based
abusive sentiment detection in Nepali social media texts,” 2024.

[8] A. Rafae et al., “An unsupervised method for discovering lexical
variations in Roman Urdu informal text,” Qatar Computing Research
Institute, HBKU; LUMS; ITU, 2021.

[9] S. Mboutayeb, A. Majda, and N. S. Nikolov, “Multilingual sentiment

analysis: A deep learning approach,” in Proc. BML’21, 2021.

M. A. Manzoor et al., “Lexical variation and sentiment analysis of

Roman Urdu sentences with deep neural networks,” 2021.

X. Liu, S. Zhang, F. Wei, and M. Zhou, “Recognizing named entities

in tweets,” in Proc. ACL-HLT, Portland, OR, 2011.

F. Liu, F. Weng, and X. Jiang, “A broad-coverage normalization system

for social media language,” in Proc. ACL, vol. 1, pp. 1035-1044, 2012.

C. Li and Y. Liu, “Improving text normalization using character-blocks

based models and system combination,” in Proc. COLING, Richardson,

TX, 2012.

I. A. Bhat et al., “IIIT-H system submission for FIRE2014 shared task

on transliterated search,” in Proc. FIRE’14, New York, NY, USA, 2015.

R. K. Behera, M. Jena, S. K. Rath, and S. Misra, “Co-LSTM: Con-

volutional LSTM model for sentiment analysis in social big data,”

Information Processing & Management, 2021.

A. A. Aliero, A. G. Tafida, B. S. Adebayo, and B. U. Kangiwa,

“Systematic review on text normalization techniques and its approach

to non-standard words,” Kebbi State, 2022.

K. Mehmood, D. Essama, K. Shafi, and M. K. Malik, “An unsupervised

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

[21]

[22]

lexical normalization for Roman Hindi and Urdu sentiment analysis,”
Australia—Pakistan, 2020.

A. Pradhananga and A. K. Sah, “Transformer-based deep learning
models for sentiment analysis in romanized Nepali: A comparative
investigation of BERT and RoBERTa,” in Proc. 14th IOE Graduate
Conference, 2023.

K. Yadav, M. S. Akhtar, and T. Chakraborty, “Normalization of spelling
variations in code-mixed data,” in Proc. Conference, Delhi, India, 2020.
M. S. Maucec, D. Verdonik, and G. Donaj, “Sequence-to-sequence
models and their evaluation for spoken language normalization of
Slovenian,” Applied Sciences, 2024.

V. Radchenko and N. Drushchak, “Improving named entity recognition
for low-resource languages using large language models: A Ukrainian
case study,” in Proc. UNLP 2025, 2025.

G. Thakkar, N. M. Preradovi¢, and M. Tadi¢, “Examining sentiment
analysis for low-resource languages with data augmentation techniques,”
2024.

28

	Introduction
	Literature Review
	Methodology
	Data Collection
	Data Preprocessing
	NEPTUN (NEpali Phonetic Transliteration Based Unified Normalization)
	Integration of NEPTUN with sentiment Analysis)
	Evaluation of Normalization Impact Sentiment Analysis)

	Results and Discussion
	Data Annotation for Phonetic Evaluation)
	Sentiment Categorization and Dataset Statistics
	Experimental Evaluation Setup
	Impact of NEPTUN Normalization on Sentiment Analysis Performance

	Conclusion
	References

