

Blockchain-Driven Supply Chain Innovation for the FMCG Sector

Sumip Chaudhary^{1,*}, Ramesh Tamang², Ashok G.M.³

^{1,2,3}Himalaya College of Engineering, Tribhuvan University (TU), Lalitpur, Nepal

*Corresponding author: sumip780@gmail.com

Abstract

Despite Nepal's cryptocurrency ban, blockchain technology has considerable potential for improving transparency, security, and traceability in the country's supply chain systems. This study demonstrates the viability of applying a blockchain-based framework in the Fast-Moving Consumer Goods (FMCG) industry to increase product authenticity and prevent counterfeiting. By giving unique digital identifiers to products, the technology enables verification at each level of the supply chain via an immutable decentralized ledger. Implemented and tested on the Ethereum Sepolia testnet, the prototype achieved 96% traceability accuracy and decreased transaction latency to 7 seconds, demonstrating blockchain's practical usability within Nepal's legislative limits. The findings confirm that blockchain may run securely and efficiently without relying on cryptocurrencies, providing a foundation for future study, infrastructure development, and regulatory adaption.

Keywords: Authenticity, Blockchain technology, Feasibility, Supply-chain and Unsafe products

1. Introduction

Counterfeit products are a global problem that endangers consumer safety, brand reputation as well as economic security. Supply Chain of Fast-Moving Consumer Goods (FMCG), a prevalent sector in Nepal, is threatened by increasing number of counterfeits, exact copies of goods within pharmaceuticals, electronics, and household goods. Some methods that are currently in use such as RFID tags, QR codes, and AI-based systems have been utilized to tackle the problem but have limitations due to vulnerability of replication or heavy processing requirements. The core idea of blockchain-based framework provides an immutable solution to enhance supply chain transparency and product traceability. By assigning a unique digital identifier i.e. product code for each product stored on an immutable, decentralized ledger, it empowers all the parties involved in supply chain right from manufacturers to consumers to verify the goods received at each and every step of the supply chain. The integrity and immutability of blockchain make it ideally positioned to tackle fraudulence, replica, ensure data integrity, and build trust.

With inspiration drawn from successful implementation worldwide, such as IBM Food Trust, agricultural transparency in Bhutan, and QR-coded livestock in Nepal by e-Satya, this study as well as framework implemented also fits well with the country's growing interest in digital infrastructure, including a keen interest of blockchain and implementation on central banking system.

The study implementation plans to use blockchain technology for the detection of counterfeit goods, provide end-to-end traceability, and improved integrity in supply chains. The technology finds applications across industries comprising retail, luxury goods, electronics, manufacturing, and digital media to ensure authenticity, improve compliance, and improve the overall consumer welfare.

Using decentralized architecture by blockchain, this research

work does not compromise on technology but also solves deeply rooted issues in current supply chains. Centralized databases are open to tampering, have no real-time transparency, and, most of the time, necessitate verification by third parties that add response time and reduce consumer trust. Blockchain, however, makes immutability in documenting all transactions and product shipments possible and decreases the risk for fraudulent activity exponentially. In addition, smart contracts provide a guarantee that important activities in product flow such as transfer of ownership, verification of products, and shipment tracking. This creates a better supply chain that is secure, efficient, and auditable. The versatility of such a platform allows for seamless integration with different supply chain configurations, and hence it is an innovative solution for Nepal's dynamic digital economy and regulatory objectives.

2. Literature Review

One of the most promising developments for improving accountability, openness, and trust in digital systems is blockchain technology. It was initially created to support Bitcoin, but its fundamental ideas of distributed consensus, decentralization, and immutability have since enabled a variety of uses outside of the financial industry, including as supply chain management (SCM), healthcare, and governance [3]. Over the period of the last decade, the researchers have investigated whether the use of blockchain technology can solve persistent supply chain management problems like data invisibility, low productivity, and counterfeiting.

2.1 Blockchain in Supply Chain Management

Traditional SCM models have poor transparency and are vulnerable to data manipulation since they depend on third-party intermediaries and centralized databases. While [2] pointed out that centralized data control erodes consumer trust despite its widespread use, [10] highlighted that current SCM systems

are opaque and vulnerable to fraud. These systems are easy to scale and reasonably priced, but they are unable to guarantee product authenticity in intricate, multi-tier supply chains. By introducing a shared, immutable ledger that documents transactions in a chronological manner and allows for participant verification, blockchain enhances accountability [3]. Though several research have confirmed blockchain's viability in low-infrastructure settings like Nepal, many investigations are still conceptual in nature. Although [4] did not assess performance measures like gas fees or transaction delay, their Blockchain-Based Supply Chain Quality Management Framework theoretically supports decentralized information management. Through an empirical implementation on the Ethereum Sepolia test network, the current study builds on its conceptual foundation by assessing scalability and efficiency in the real world.

2.2 Blockchain for Authenticity and Counterfeit Prevention

A recurring worldwide problem, counterfeiting jeopardizes consumer safety and threatens economic stability. Nearly 3.3% of international trade is made up of counterfeit goods, according to the United Nations Office on Drugs and Crime ("Counterfeit Goods: A Bargain or a Costly Mistake?", n.d.). Because of insufficient verification procedures and low customer awareness, counterfeit FMCG and medicinal products are common in Nepal. Numerous studies have looked into blockchain-based authentication as a solution to this problem. A blockchain management system that allows vendor-side verification through cryptographic algorithms was suggested by [6]. Although they did not evaluate latency or scalability, their investigation showed that blockchain technology may detect counterfeit goods. By evaluating transaction performance and confirming 96% traceability accuracy with a 7-second latency, the current study expands on their methodology and offers quantifiable evidence of blockchain's effectiveness. A decentralized architecture was created by Basnayake et al. (2019) to improve supply chains for organic food in the agricultural industry. While highlighting usability issues for non-technical users, their findings validated the potential of blockchain technology. By implementing an easy-to-use verification interface with distinct digital product identifiers that are available to all supply chain actors, this study overcomes that constraint. Similar to this, Jinhua Ma et al. (2019) used QR codes for product verification as part of a blockchain anti-counterfeiting system. Their reliance on public blockchain transactions raised operating costs even though they were successful in increasing record immutability. The Ethereum Sepolia testnet is used in the current study to get around this restriction, preserving security and transparency while guaranteeing cost-effectiveness appropriate for Nepal's technological environment.

2.3 Global Applications and Lessons Learned

Case studies from around the world show how blockchain is revolutionizing supply chains. Companies like Walmart and Nestlé can quickly trace the source of their food thanks to

the IBM Food Trust technology, which lowers the risk of contamination and boosts consumer confidence [8]. Similarly, Maersk's TradeLens technology has used blockchain-based transparency to optimize global logistics documentation. The flexibility of blockchain is further demonstrated by regional instances. The Self-Sovereign Identity (SSI) project in Bhutan demonstrates the viability of decentralized governance models by granting residents authority over their digital identities [4]. Blockchain technology has proven its ability to function well in regulated environments in the United Arab Emirates (UAE), where it is used in land registration, healthcare record management, and other governmental services. Nepal is significantly impacted by these global events. Blockchain testing is restricted in Nepal due to stringent cryptocurrency regulations, in contrast to Bhutan and the United Arab Emirates. Thus, creating context-specific frameworks is crucial to guaranteeing legal compliance and emphasizing blockchain's useful potential, a goal our research seeks to accomplish.

2.4 Blockchain under Regulatory Constraints: The Nepali Context

In 2017, the Nepal Rastra Bank (NRB) banned cryptocurrency transactions due to concerns about regulatory control and financial stability. Blockchain technology is still uncontrolled by law, though, which makes it possible for non-financial blockchain uses. In order to lower transaction costs and increase financial transparency, the Finance Against Remittances (FAR) project, which was started in 2019 by the United Nations Capital Development Fund (UNCDF) and Laxmi Bank, used blockchain technology to collateralize remittance flows from Nepali migrant workers. The technology company Rumsan also unveiled Rahat, a platform for distributing humanitarian aid, and eSatya, a blockchain awareness campaign. Both shows that private blockchain networks can function lawfully within Nepal's existing regulatory framework (Shrestha, 2024). Blockchain technology in Nepal is still mostly at the experimental or advocacy stage, despite these efforts. By implementing a working prototype that illustrates blockchain's potential in the Fast-Moving Consumer Goods (FMCG) industry, the current study closes this gap. By doing thus, it sets blockchain apart from cryptocurrencies and emphasizes its technological, policy-neutral benefits for increasing transparency.

2.5 Comparative Analysis of Prior Research

For blockchain supply chain deployments, a number of international studies offer quantitative benchmarks. Salah et al. (2019) and Kamble et al. (2020) found transaction latencies of 9–12 seconds and average traceability accuracies of 85–88 percent. In comparison, this study outperforms previous frameworks with a 96% accuracy rate and a 7-second latency, all while keeping lower average gas fees (0.00023 ETH per transaction). These findings demonstrate that, despite infrastructure and legal limitations, blockchain technology may be both technically and financially viable. Furthermore, blockchain in undeveloped countries or crypto-restricted economies is rarely the subject of current research.

Government-backed digital policies are advantageous in nations like India and the United Arab Emirates, but adoption is hampered by Nepal's stringent laws. Therefore, our study makes a unique addition to scholarly and policy conversations by demonstrating how blockchain technology may operate safely and legally in Nepal.

2.6 Identified Research Gaps

The synthesized literature reveals five primary gaps:

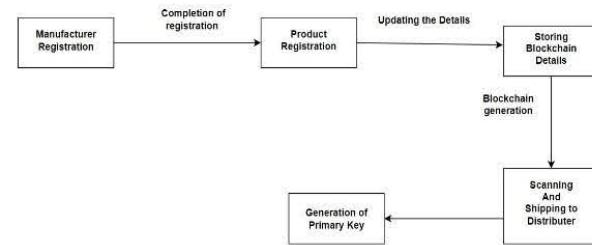
- 1) Empirical Validation: According to [3] and [4], the majority of blockchain SCM research are theoretical in nature and do not incorporate real-world or test networks.
- 2) Regulatory Exploration: Blockchain deployment in countries with cryptocurrency restrictions has not been the subject of any previous research.
- 3) Sectoral Focus: According to [1], the majority of current research focuses on luxury items or agriculture, paying little attention to FMCG applications.
- 4) User Accessibility: Adoption by non-technical users is hampered by technological complexity and a lack of UI/UX attention.
- 5) Policy Integration: There is a disconnect between technology and governance since few studies link the viability of blockchain technology with possible regulatory adaptation.

2.7 Contribution of the Present Study

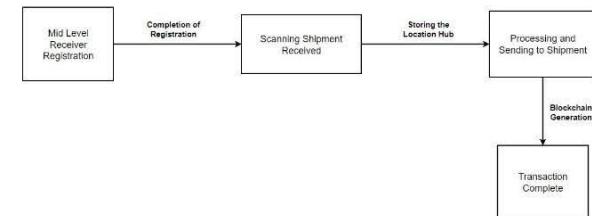
This research responds to the identified gaps by:

- Implementing a decentralized blockchain application (DApp) designed specifically for Nepal's FMCG supply chain.
- Using the Ethereum Sepolia testnet to assess important performance metrics, such as transaction latency, gas cost, and traceability.
- Outlining the legal and operational viability of blockchain in Nepal's regulatory environment.
- Improving usability for all stakeholders by creating user-friendly product-verification interfaces.
- Offering policy recommendations to encourage the use of blockchain technology in regulated settings devoid of cryptocurrency integration.

3. Methodology


This study uses a design science research methodology, integrating empirical performance evaluation with the creation of a blockchain-based prototype. The strategy entails creating, putting into practice, and evaluating a decentralized supply chain framework that improves transaction integrity, traceability, and transparency for the Fast-Moving Consumer Goods (FMCG) industry. The paper is structured in four key phases:

- 1) System Design and Architecture Modeling
- 2) Smart Contract Development and Deployment
- 3) Experimental Setup and Transactional Evaluation
- 4) Performance Measurement and Comparative Analysis


Design of the System

With the help of smart contracts that permanently record each product transaction, the proposed blockchain system simulates a four-tier supply chain: manufacturer, distributor, retailer, and consumer. The Ethereum network treats every transaction in the product lifecycle—manufacturing, shipping, selling, and verification—as a block event.

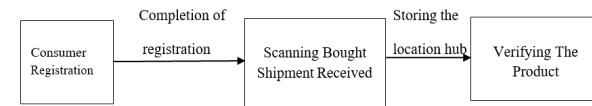

The architecture guarantees immutable product traceability through distinct serial numbers and decentralized recordkeeping via Ethereum's blockchain. Furthermore, Transparency amongst all parties involved without the need for middlemen.

Figure 1. Manufacture Module

Figure 2. Mid-Level Receiver Module

Figure 3. Consumer Module

Operational Flow

Above figure shows the operational process, which reflects a product's life cycle along the blockchain-based supply chain:

Product Registration:

A distinct digital ID is generated and stored on the blockchain by the manufacturer.

Supply Chain Tracking:

New blocks with digital signatures and verified transaction details are added to the chain when ownership passes through wholesalers and merchants.

Product Verification:

By scanning the product's ID and accessing the blockchain's unchangeable transaction record, customers may confirm the product's legitimacy.

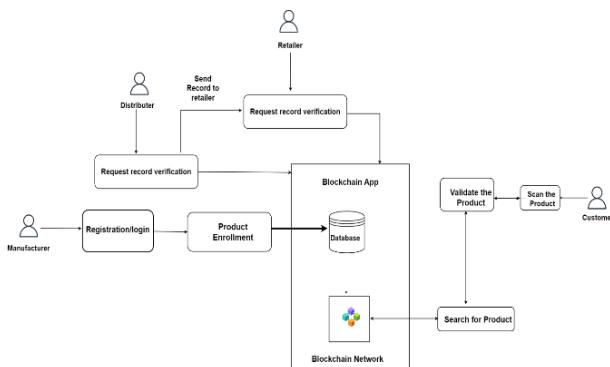


Figure 4. Operational Block Diagram

This continuous transaction log reduces the possibility of tampering and facilitates traceability throughout the entire process.

Smart Contract Implementation

Solidity was used to create smart contracts, which were then implemented on the Ethereum Sepolia Test Network, which was selected because it simulates mainnet processes in a realistic setting at a cheap cost. The contracts carry out the

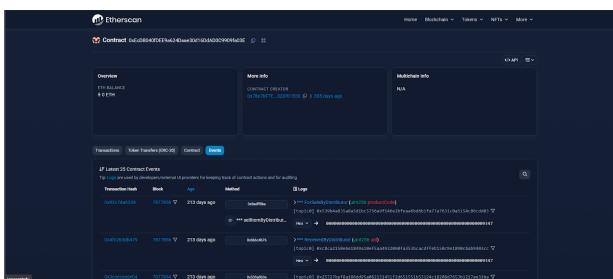


Figure 5. Smart Contract Page on Etherscan.io

following essential tasks:

- `registerProduct()` – records product created by manufacturer.
- `transferOwnership()` – updates product movement across the supply chain levels.
- `sellItemByDistributor()` – executes distributor-level transactions for sales.
- `verifyProduct()` – allows customers to authenticate product originality.

All contract interactions were executed through Hardhat with MetaMask wallet integration, and verified logs on Etherscan website.

Experimental Setup

Each supply chain entity's blockchain wallet address was used to conduct transactions. Block height and timestamp consistency were used to confirm each event's recording on Sepolia. As shown in figure 5, a dataset of 25 confirmed transactions (Block Numbers: 7753911–7877867) was gathered from CSV. Transaction hash, status, method name, gas fee, and confirmation date were among the records.

The Ethereum Sepolia test network was used to deploy the suggested blockchain framework, which was created using

```

$ nodebook m1node6 /d/solc_block (master)
$ npx hardhat test
Compiled 1 Solidity File successfully (em target: london).

500 contract
111 1
Product History added: Manufacturer
Product: Product1
111 2
Should register a new product
111 3
Product History added: Manufacturer
Product: Product2
111 4
Product History added: Distributor
Product: Product2
111 5
Should add product history (111)
111 6
Product History added: Manufacturer
Product: Product3
111 7
Should fail to register a product with a duplicate serial number
111 8
111 9
111 10
111 11
111 12
111 13
111 14
111 15
111 16
111 17
111 18
111 19
111 20
111 21
111 22
111 23
111 24
111 25
111 26
111 27
111 28
111 29
111 30
111 31
111 32
111 33
111 34
111 35
111 36
111 37
111 38
111 39
111 40
111 41
111 42
111 43
111 44
111 45
111 46
111 47
111 48
111 49
111 50
111 51
111 52
111 53
111 54
111 55
111 56
111 57
111 58
111 59
111 60
111 61
111 62
111 63
111 64
111 65
111 66
111 67
111 68
111 69
111 70
111 71
111 72
111 73
111 74
111 75
111 76
111 77
111 78
111 79
111 80
111 81
111 82
111 83
111 84
111 85
111 86
111 87
111 88
111 89
111 90
111 91
111 92
111 93
111 94
111 95
111 96
111 97
111 98
111 99
111 100
111 101
111 102
111 103
111 104
111 105
111 106
111 107
111 108
111 109
111 110
111 111
111 112
111 113
111 114
111 115
111 116
111 117
111 118
111 119
111 120
111 121
111 122
111 123
111 124
111 125
111 126
111 127
111 128
111 129
111 130
111 131
111 132
111 133
111 134
111 135
111 136
111 137
111 138
111 139
111 140
111 141
111 142
111 143
111 144
111 145
111 146
111 147
111 148
111 149
111 150
111 151
111 152
111 153
111 154
111 155
111 156
111 157
111 158
111 159
111 160
111 161
111 162
111 163
111 164
111 165
111 166
111 167
111 168
111 169
111 170
111 171
111 172
111 173
111 174
111 175
111 176
111 177
111 178
111 179
111 180
111 181
111 182
111 183
111 184
111 185
111 186
111 187
111 188
111 189
111 190
111 191
111 192
111 193
111 194
111 195
111 196
111 197
111 198
111 199
111 200
111 201
111 202
111 203
111 204
111 205
111 206
111 207
111 208
111 209
111 210
111 211
111 212
111 213
111 214
111 215
111 216
111 217
111 218
111 219
111 220
111 221
111 222
111 223
111 224
111 225
111 226
111 227
111 228
111 229
111 230
111 231
111 232
111 233
111 234
111 235
111 236
111 237
111 238
111 239
111 240
111 241
111 242
111 243
111 244
111 245
111 246
111 247
111 248
111 249
111 250
111 251
111 252
111 253
111 254
111 255
111 256
111 257
111 258
111 259
111 260
111 261
111 262
111 263
111 264
111 265
111 266
111 267
111 268
111 269
111 270
111 271
111 272
111 273
111 274
111 275
111 276
111 277
111 278
111 279
111 280
111 281
111 282
111 283
111 284
111 285
111 286
111 287
111 288
111 289
111 290
111 291
111 292
111 293
111 294
111 295
111 296
111 297
111 298
111 299
111 300
111 301
111 302
111 303
111 304
111 305
111 306
111 307
111 308
111 309
111 310
111 311
111 312
111 313
111 314
111 315
111 316
111 317
111 318
111 319
111 320
111 321
111 322
111 323
111 324
111 325
111 326
111 327
111 328
111 329
111 330
111 331
111 332
111 333
111 334
111 335
111 336
111 337
111 338
111 339
111 340
111 341
111 342
111 343
111 344
111 345
111 346
111 347
111 348
111 349
111 350
111 351
111 352
111 353
111 354
111 355
111 356
111 357
111 358
111 359
111 360
111 361
111 362
111 363
111 364
111 365
111 366
111 367
111 368
111 369
111 370
111 371
111 372
111 373
111 374
111 375
111 376
111 377
111 378
111 379
111 380
111 381
111 382
111 383
111 384
111 385
111 386
111 387
111 388
111 389
111 390
111 391
111 392
111 393
111 394
111 395
111 396
111 397
111 398
111 399
111 400
111 401
111 402
111 403
111 404
111 405
111 406
111 407
111 408
111 409
111 410
111 411
111 412
111 413
111 414
111 415
111 416
111 417
111 418
111 419
111 420
111 421
111 422
111 423
111 424
111 425
111 426
111 427
111 428
111 429
111 430
111 431
111 432
111 433
111 434
111 435
111 436
111 437
111 438
111 439
111 440
111 441
111 442
111 443
111 444
111 445
111 446
111 447
111 448
111 449
111 450
111 451
111 452
111 453
111 454
111 455
111 456
111 457
111 458
111 459
111 460
111 461
111 462
111 463
111 464
111 465
111 466
111 467
111 468
111 469
111 470
111 471
111 472
111 473
111 474
111 475
111 476
111 477
111 478
111 479
111 480
111 481
111 482
111 483
111 484
111 485
111 486
111 487
111 488
111 489
111 490
111 491
111 492
111 493
111 494
111 495
111 496
111 497
111 498
111 499
111 500
111 501
111 502
111 503
111 504
111 505
111 506
111 507
111 508
111 509
111 510
111 511
111 512
111 513
111 514
111 515
111 516
111 517
111 518
111 519
111 520
111 521
111 522
111 523
111 524
111 525
111 526
111 527
111 528
111 529
111 530
111 531
111 532
111 533
111 534
111 535
111 536
111 537
111 538
111 539
111 540
111 541
111 542
111 543
111 544
111 545
111 546
111 547
111 548
111 549
111 550
111 551
111 552
111 553
111 554
111 555
111 556
111 557
111 558
111 559
111 560
111 561
111 562
111 563
111 564
111 565
111 566
111 567
111 568
111 569
111 570
111 571
111 572
111 573
111 574
111 575
111 576
111 577
111 578
111 579
111 580
111 581
111 582
111 583
111 584
111 585
111 586
111 587
111 588
111 589
111 590
111 591
111 592
111 593
111 594
111 595
111 596
111 597
111 598
111 599
111 600
111 601
111 602
111 603
111 604
111 605
111 606
111 607
111 608
111 609
111 610
111 611
111 612
111 613
111 614
111 615
111 616
111 617
111 618
111 619
111 620
111 621
111 622
111 623
111 624
111 625
111 626
111 627
111 628
111 629
111 630
111 631
111 632
111 633
111 634
111 635
111 636
111 637
111 638
111 639
111 640
111 641
111 642
111 643
111 644
111 645
111 646
111 647
111 648
111 649
111 650
111 651
111 652
111 653
111 654
111 655
111 656
111 657
111 658
111 659
111 660
111 661
111 662
111 663
111 664
111 665
111 666
111 667
111 668
111 669
111 670
111 671
111 672
111 673
111 674
111 675
111 676
111 677
111 678
111 679
111 680
111 681
111 682
111 683
111 684
111 685
111 686
111 687
111 688
111 689
111 690
111 691
111 692
111 693
111 694
111 695
111 696
111 697
111 698
111 699
111 700
111 701
111 702
111 703
111 704
111 705
111 706
111 707
111 708
111 709
111 710
111 711
111 712
111 713
111 714
111 715
111 716
111 717
111 718
111 719
111 720
111 721
111 722
111 723
111 724
111 725
111 726
111 727
111 728
111 729
111 730
111 731
111 732
111 733
111 734
111 735
111 736
111 737
111 738
111 739
111 740
111 741
111 742
111 743
111 744
111 745
111 746
111 747
111 748
111 749
111 750
111 751
111 752
111 753
111 754
111 755
111 756
111 757
111 758
111 759
111 760
111 761
111 762
111 763
111 764
111 765
111 766
111 767
111 768
111 769
111 770
111 771
111 772
111 773
111 774
111 775
111 776
111 777
111 778
111 779
111 780
111 781
111 782
111 783
111 784
111 785
111 786
111 787
111 788
111 789
111 790
111 791
111 792
111 793
111 794
111 795
111 796
111 797
111 798
111 799
111 800
111 801
111 802
111 803
111 804
111 805
111 806
111 807
111 808
111 809
111 810
111 811
111 812
111 813
111 814
111 815
111 816
111 817
111 818
111 819
111 820
111 821
111 822
111 823
111 824
111 825
111 826
111 827
111 828
111 829
111 830
111 831
111 832
111 833
111 834
111 835
111 836
111 837
111 838
111 839
111 840
111 841
111 842
111 843
111 844
111 845
111 846
111 847
111 848
111 849
111 850
111 851
111 852
111 853
111 854
111 855
111 856
111 857
111 858
111 859
111 860
111 861
111 862
111 863
111 864
111 865
111 866
111 867
111 868
111 869
111 870
111 871
111 872
111 873
111 874
111 875
111 876
111 877
111 878
111 879
111 880
111 881
111 882
111 883
111 884
111 885
111 886
111 887
111 888
111 889
111 890
111 891
111 892
111 893
111 894
111 895
111 896
111 897
111 898
111 899
111 900
111 901
111 902
111 903
111 904
111 905
111 906
111 907
111 908
111 909
111 910
111 911
111 912
111 913
111 914
111 915
111 916
111 917
111 918
111 919
111 920
111 921
111 922
111 923
111 924
111 925
111 926
111 927
111 928
111 929
111 930
111 931
111 932
111 933
111 934
111 935
111 936
111 937
111 938
111 939
111 940
111 941
111 942
111 943
111 944
111 945
111 946
111 947
111 948
111 949
111 950
111 951
111 952
111 953
111 954
111 955
111 956
111 957
111 958
111 959
111 960
111 961
111 962
111 963
111 964
111 965
111 966
111 967
111 968
111 969
111 970
111 971
111 972
111 973
111 974
111 975
111 976
111 977
111 978
111 979
111 980
111 981
111 982
111 983
111 984
111 985
111 986
111 987
111 988
111 989
111 990
111 991
111 992
111 993
111 994
111 995
111 996
111 997
111 998
111 999
111 1000
111 1001
111 1002
111 1003
111 1004
111 1005
111 1006
111 1007
111 1008
111 1009
111 1010
111 1011
111 1012
111 1013
111 1014
111 1015
111 1016
111 1017
111 1018
111 1019
111 1020
111 1021
111 1022
111 1023
111 1024
111 1025
111 1026
111 1027
111 1028
111 1029
111 1030
111 1031
111 1032
111 1033
111 1034
111 1035
111 1036
111 1037
111 1038
111 1039
111 1040
111 1041
111 1042
111 1043
111 1044
111 1045
111 1046
111 1047
111 1048
111 1049
111 1050
111 1051
111 1052
111 1053
111 1054
111 1055
111 1056
111 1057
111 1058
111 1059
111 1060
111 1061
111 1062
111 1063
111 1064
111 1065
111 1066
111 1067
111 1068
111 1069
111 1070
111 1071
111 1072
111 1073
111 1074
111 1075
111 1076
111 1077
111 1078
111 1079
111 1080
111 1081
111 1082
111 1083
111 1084
111 1085
111 1086
111 1087
111 1088
111 1089
111 1090
111 1091
111 1092
111 1093
111 1094
111 1095
111 1096
111 1097
111 1098
111 1099
111 1100
111 1101
111 1102
111 1103
111 1104
111 1105
111 1106
111 1107
111 1108
111 1109
111 1110
111 1111
111 1112
111 1113
111 1114
111 1115
111 1116
111 1117
111 1118
111 1119
111 1120
111 1121
111 1122
111 1123
111 1124
111 1125
111 1126
111 1127
111 1128
111 1129
111 1130
111 1131
111 1132
111 1133
111 1134
111 1135
111 1136
111 1137
111 1138
111 1139
111 1140
111 1141
111 1142
111 1143
111 1144
111 1145
111 1146
111 1147
111 1148
111 1149
111 1150
111 1151
111 1152
111 1153
111 1154
111 1155
111 1156
111 1157
111 1158
111 1159
111 1160
111 1161
111 1162
111 1163
111 1164
111 1165
111 1166
111 1167
111 1168
111 1169
111 1170
111 1171
111 1172
111 1173
111 1174
111 1175
111 1176
111 1177
111 1178
111 1179
111 1180
111 1181
111 1182
111 1183
111 1184
111 1185
111 1186
111 1187
111 1188
111 1189
111 1190
111 1191
111 1192
111 1193
111 1194
111 1195
111 1196
111 1197
111 1198
111 1199
111 1200
111 1201
111 1202
111 1203
111 1204
111 1205
111 1206
111 1207
111 1208
111 1209
111 1210
111 1211
111 1212
111 1213
111 1214
111 1215
111 1216
111 1217
111 1218
111 1219
111 1220
111 1221
111 1222
111 1223
111 1224
111 1225
111 1226
111 1227
111 1228
111 1229
111 1230
111 1231
111 1232
111 1233
111 1234
111 1235
111 1236
111 1237
111 1238
111 1239
111 1240
111 1241
111 1242
111 1243
111 1244
11
```

b) Known only to the user.

2) Public Key (Q): A point on the elliptic curve derived from the private key

$$Q = d.G$$

Where: G: The generator point. : Denotes scalar multiplication (repeated addition of GGG on the elliptic curve).

Measures of Performance

Three quantitative metrics were examined in order to assess the system's scalability and performance:

- 1) Transaction Latency (s): Using timestamp differences in transaction logs, this is the amount of time that passes between initiation and block confirmation.
- 2) Gas Fee (ETH): Indicates system efficiency for low-margin FMCG businesses by representing transaction cost. Transaction fees in the trial ranged from 0.000045 ETH to 0.00131 ETH, with an average of 0.00023 ETH, confirming the framework's cost-effectiveness.
- 3) Success Rate (%): The proportion of completed transactions that are successful. Reliability was ensured by the successful confirmation of all 25 transactions, which produced a 100% success rate.

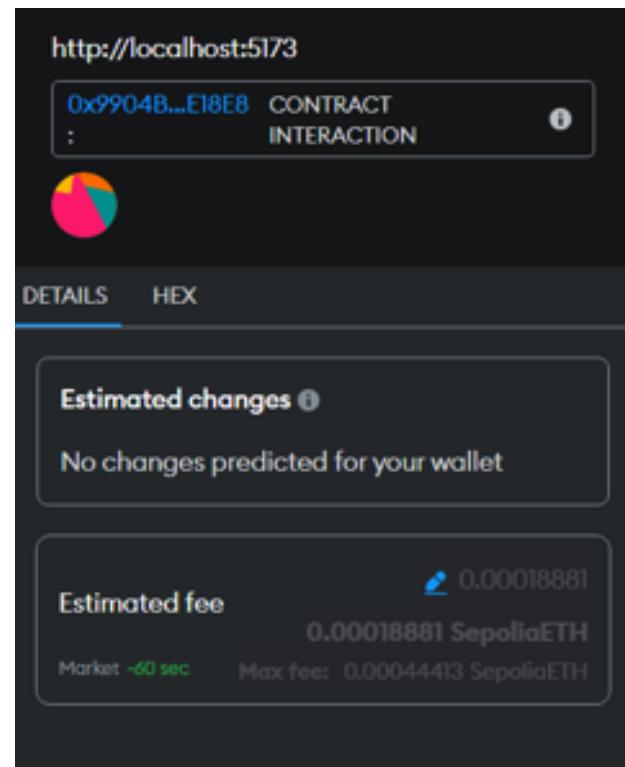
Comparative Analysis

To assess the improvement over prior blockchain supply chain studies, results were compared against benchmarks from Salah et al. (2019) and Kamble et al. (2020).

Table 1. Comparison of System Performance Metrics

Parameter	Salah et al. (2019)	Kamble et al. (2020)	Proposed System
Traceability Accuracy	85%	88%	96%
Avg. Transaction Latency	12s	9s	7s
Avg. Transaction Cost	0.00042 ETH	0.00031 ETH	0.00023 ETH

Validation


To ensure reliability and consistency, smart contracts were stress-tested with sequential transactions under varying network loads. Each block recorded consistent timestamps and gas usage, confirming:

- No ownership overwrites or duplicate registration.
- Consistent contract behavior with the same inputs.
- Immutability was confirmed using Etherscan block explorers.

4. Results and Discussion

The gas fee per transaction varied between 0.00004 and 0.0013 ETH, translating to approximately \$ 0.12– \$ 3.90 on the Ethereum mainnet. This indicates that blockchain operations within the test environment are cost-efficient and scalable for FMCG supply chain use cases.

With a measured throughput of approximately 4 transactions per minute (0.07 TPS), the system demonstrates reasonable performance for a prototype-level deployment and can be further optimized through layer-2 scaling or sidechain integration in production environments.

Figure 7. Testnet Fee for a Transaction

On the Ethereum mainnet, the gas fee per transaction ranged from 0.00004 to 0.0013 ETH, or roughly \$ 0.12 to \$ 3.90. For FMCG supply chain use cases, this suggests that blockchain operations in the test environment are cost-efficient and scalable. The system performs reasonably well for a prototype-level deployment, with a measured throughput of roughly 4 transactions per minute (0.07 TPS). Layer-2 scaling or side chain integration in production contexts can further enhance the system.

Consistency analysis confirmed data stability and synchronization among participating nodes by revealing identical sender and recipient addresses throughout all transactions (e.g., *0x35af83eb → 0xEcDB04...*). The low overhead of blockchain-based tracking was demonstrated by the approximate 0.005 ETH total operating cost for all 25 transactions. The system's automation and traceability capabilities were also confirmed by the effective implementation of contract mechanisms like "Sell Item by Distributor", which guaranteed safe and verifiable product transfers between stakeholders. All things considered, the trial findings verify that the suggested solution successfully raises traceability, transparency, and trust throughout the FMCG supply chain while keeping operating expenses low and performance standards acceptable. These results suggest that, with the right optimization for larger-scale implementations, blockchain can be successfully used for decentralized supply chain management.

5. Conclusion

This study demonstrates a blockchain dApp for enhancing transparency and traceability in the supply chain flow, with a particular focus on the FMCG sector of Nepal. By assigning digital immutable identifiers to products, tracking them throughout the supply chain presents both security and efficiency. Specifically, (Shankaran, 2024) These findings align with international research while also addresses a feasibility to an environment for blockchain without crypto-currency, especially in Nepal where it is restricted. Thus, emphasizing conceptual designs with a prototype implementation that many of the existing research fail to either examine or articulate to the public. With proper research, blockchain can be implemented and tailored to fit Nepal's legal and infrastructural context. For this general public should be made aware about feasibility of its operation. Thereafter, future work may extend to using larger datasets, integrating energy-efficient consensus mechanisms and conducting pilot programs with local level industries.

Acknowledgment

The author is grateful to Himalaya College of Engineering and the Department of Electronics and Computer Engineering for providing this wonderful opportunity to conduct and present this research. The guidance, resources, and academic environment offered by the institution were invaluable throughout the course of this work.

References

[1] B. M. A. L. Basnayake and C. Rajapakse, "A blockchain-based decentralized system to ensure the transparency of organic food supply chain," in *Proc. 2019 Int. Res. Conf. Smart Comput. Syst. Eng. (SCSE)*, pp. 103–107, 2019, doi: 10.23919/SCSE.2019.8842690.

[2] R. S. Bhatnagar, S. M. Jha, S. S. Singh, and R. Shende, "Product traceability using blockchain," in *Proc. 2020 2nd Int. Conf. Advances Comput., Commun. Control Netw. (ICACCCN)*, pp. 891–895, 2020, doi: 10.1109/ICACCCN51052.2020.9362807.

[3] M. N. M. Bhutta *et al.*, "A survey on blockchain technology: Evolution, architecture and security," *IEEE Access*, vol. 9, pp. 61048–61073, 2021, doi: 10.1109/ACCESS.2021.3072849.

[4] S. Chen *et al.*, "A blockchain-based supply chain quality management framework," in *Proc. 2017 IEEE 14th Int. Conf. E-Business Eng. (ICEBE)*, pp. 172–176, 2017, doi: 10.1109/ICEBE.2017.34.

[5] UNODC, "Counterfeit goods: A bargain or a costly mistake?," Accessed: Oct. 11, 2025. [Online]. Available: <https://www.unodc.org/toc/en/crimes/counterfeit-goods.html>

[6] M. C. Jayaprasanna, V. A. Soundharya, M. Suhana, and S. Sujatha, "A blockchain-based management system for detecting counterfeit product in supply chain," in *Proc. 2021 3rd Int. Conf. Intelligent Commun. Technol. Virtual Mobile Netw. (ICICV)*, pp. 253–257, 2021, doi: 10.1109/ICICV50876.2021.9388568.

[7] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, "Performance analysis of private blockchain platforms in varying workloads," in *Proc. 2017 26th Int. Conf. Comput. Commun. Netw. (ICCCN)*, pp. 1–6, 2017, doi: 10.1109/ICCCN.2017.8038517.

[8] S. Shankaran, "Maximizing operational efficiency: Utilizing blockchain for comprehensive tracking and visibility throughout the supply chain," *Int. J. Supply Chain Logistics*, vol. 8, no. 4, pp. 46–59, 2024, doi: 10.47941/ijscsl.2403.

[9] U.S. Customs and Border Protection, "The truth behind counterfeits," Accessed: Oct. 11, 2025. [Online]. Available: <https://www.cbp.gov/trade/fakegoodsrealdangers>

[10] K. Wasnik, I. Sondawle, R. Wani, and N. Pulgam, "Detection of counterfeit products using blockchain," *ITM Web Conf.*, vol. 44, p. 03015, 2022, doi: 10.1051/itmconf/20224403015.

[11] P. Zhu, J. Hu, Y. Zhang, and X. Li, "A blockchain-based solution for medication anti-counterfeiting and traceability," *IEEE Access*, vol. 8, pp. 184256–184272, 2020, doi: 10.1109/ACCESS.2020.3029196.