Journal of Himalaya College of Engineering Volume: 1 Issue: 1

A Practical Significance Distributed File System: An Analysis

Gajendra Sharma'”, Gaurav Koirala!
IDepartment of Computer Science and Engineering, Kathmandu University, Dhulikhel, Kavre, Nepal

Corresponding Email : gajendra.sharma@ku.edu.np

Abstract

The world's data collecting is growing and expanding. The infrastructure must be able to hold a large
amount of data, which is becoming more crucial every day. Distributed File Systems could be used to
accomplish this. For processing, storing, and analyzing massive amounts of unstructured data, the
Distributed File System (DFS) is utilized. Google File System (GFS) and Hadoop Distributed File
System are the most popular file systems (HDFS). We give a review of distributed file system design
in this work. Scalability, availability, compatibility, extensibility, autonomy, and other factors are

considered while comparing file systems.

Keywords

File System (GFS), Review of DFS

Distributed File System, Big Data, Design of DFS, Hadoop Distributed File System (HDFS), Google

1. INTRODUCTION

Data is generated from a variety of sources,
including business operations, transactions, social
networking sites, web servers, and so on, and it
can be structured or unstructured [1].Data sharing
in distributed systems is already ubiquitous and
becoming more so. In a distributed system, each
user can be both a creator and a consumer of data.
The Distributed File System (DFS) is a set of
client and server services that enable an
organization to organize numerous SMB file
shares into a distributed file system using
Microsoft Windows servers. By allowing shares
in numerous different locations to be logically
aggregated under one folder, it provides location
transparency and redundancy to increase data
availability in the face of failure or severe traffic.
This type of system allows programs to store and
access remote data in the same way that local files
are stored and accessed, allowing users to access

these files from any computer on the network. It

is designed for batch processing, which means
that data locations are accessible, allowing
computation to move to where the data is stored
while maintaining high bandwidth. DFS also
provides capabilities like data sharing for
numerous users, user mobility, and Location
Transparency, which allows you to hide or not
reveal any hint or tip about the file's location. The
necessity for a Distributed File System arose from
the disadvantage of the previous system, which
needed users to know the physical addresses of all

computers involved in the file sharing process.

When compared to a local file system, the
requirements for a distributed file system are
different. The requirements that must be
considered when designing the Distributed File

System are as follows [2]:

The feature of fault tolerance must be

well-implemented. One of the most

Journal of Himalaya College of Engineering

critical needs here is how quickly data

can be restored following a failure.

The size of the files kept in DFS will be
enormous. The majority of the files are
more than 1 GB. In DFS, handling these
kinds of large files is critical. Some file
systems will split files into chunks. The
benefit of doing so is that the amount of
data handled by a single operation is
reduced from several GBs to a few MBs.
However, it necessitates additional
mapping procedures for each operation,
which may result in a performance

reduction.

The majority of DFS files follow the
write-once-read-many paradigms. As a
result, many DFSs provide features that
are optimized for file writers and readers
[3]- Few of them also include effective
functions for editing an existing file at
any point in time. Some DFSs don't even
have a feature that allows you to update

an existing file.

DES relies heavily on metadata. Because

most DFS systems accommodate
millions of files, accessing every node
directly is not an effective way to retrieve
information on any given file. As aresult,
most DFS designate a single node as the
cenfral, which is responsible for
maintaining the metadata of all files
stored in the system. The metadata list
will greatly speed up the retrieval of file

information.

Volume: 1 Issue: 1

Nowadays, DFS enables the operation of massive
data, large-scale computations, and transactions.
The categories are based on the working logics
and designs of the systems. Fault tolerance,
replications, naming, synchronization, and design
intent were used to make these classifications.
The architecture of the Distributed File System
can be understood from Figure 1.

G ITE IR
oy

Figure 1: Distributed File System General
Architecture

This paper is structured as follows. In Section 2,
the background information required for the
better understanding of DFSs presented in this
paper is discussed. In this section, first the precise
definition of the Distributed File System (DFS) is
expressed. The most common Distributed File
System architecture is explained, and in Section
3, the studies in design of DFS are presented.
Finally, in Section 4, the general conclusion is

discussed.

2. BACKGROUND

2.1 Design Goals of DFS

Early distributed file systems relied on a distant
server to execute file system calls, which limited
scalability and fault tolerance [4]. Modern
approaches such as distributed hash tables,
distributed

content-addressable storage,

Journal of Himalaya College of Engineering

consensus algorithms, and erasure codes have
considerably reduced such constraints. Two
themes are emerging in view of projected
exabyte-scale scientific data volumes [2]. First,
distributed file systems' previously monolithic
design is fragmented into services that provide a
hierarchical namespace, data access, and
distributed coordination individually. Second, the
separation of storage and processing resources
results in a storage architecture in which each
compute node provides permanent storage.
Google File System (GFS) and Hadoop
Distributed File (HDFS) System are the most

popular file systems.

In a number of ways, distributed file systems may
strive for transparency. That is, they strive to be
imperceptible to client programs, which see a
system that resembles a local file system [2]. The
distributed file system is in charge of locating
files, transmitting data, and perhaps delivering the

other features described below [5].

e Access transparency; Clients are ignorant
that files are dispersed and can access
them in the same way that local files are

accessed.

e Jlocation ftransparency;There is a
consistent namespace that encompasses
both local and distant files. The location

of a file is not indicated by its name.

e Failure transparency; the client and client
programs should operate correctly after a

server failure.

e Replication transparency; to support

scalability, we may wish to replicate files

Volume: 1 Issue: 1

across multiple servers. Clients should be

unaware of this.

e Heterogeneity; file service should be
provided across different hardware and

operating system platforms.

2.2 Issues in Distributed File System

When developing a distributed file system, there
are a number of considerations to keep in mind.
Transparency, flexibility, reliability,
performance, scalability, and security are the

several topics discussed in this section [6].
A. Transparency

The most important design issue is to hide from
the users the fact that processes and resources are

physically distributed across the network.
B. Flexibility

The easiest strategy to achieve flexibility is to
decide whether each machine should use a
monolithic kernel or a microkernel. Memory
management, process management, and resource
management are the three main functions of the

kemel.
C. Reliability

Users prefer a distributed system with numerous
processes because it protects them from single-
processor system failures. As a result, in the event
of a failure, a backup is available. The term
"reliability" refers to the availability of data that
is free of errors. All copies of a replication should

be consistent.

Journal of Himalaya College of Engineering

D. Performance

It simply means that a program should run as
though it were on a single CPU. Response time,
throughput, system utilization, and the amount of
network capacity consumed are the measures

used to assess performance.
E. Scalability

Distributed systems are made to work with a
small number of CPUs. It's possible that the
distributed system will need to be expanded by
adding more CPUs. There are limitations with
centralized services, tables, and algorithms when

supporting additional people or resources.
F. Security
Security consists of three main aspects namely,

1. Confidentiality which means protection against

unauthorized access

2. Integrity, which implies protection of data

against corruption

3. Availability, which means protection against

failure and always being accessible
G. Fault Tolerance

In case a system has multiple servers’ and if any
Server breaks down, the other server takes up the

load. This process is transparent to the user.

2.3 The Most Common DFS

Google engineers provided a solution to the
problem in 2003, when the Internet giant faced
scaling concerns and issues with storage media
and the establishment of a distributed file system.
The Google File System (GFS) refers to a

collection of documents that have resulted in a

Volume: 1 Issue: 1

much larger distributed file system application
that is very similar to the GFS. The Apache
Hadoop Distributed File System (HDFS) has

been presented as a system file.

Google File Systems (GFS)
The Google File System (GFS) was first

introduced in 2003 to suit Google's fast rising data
processing demands. It's a scalable distributed file
system designed for large-scale, data-intensive
distributed applications. It has fault tolerance and
gives great aggregate performance to a large
number of clients while running on low-cost
commodity hardware. GFS clusters are made up
of hundreds, if not thousands, of storage units

made from low-cost commodity hardware [7].
A. Goals

GFS shares many of the same goals as previous
distributed file systems such as performance,
reliability, and availability. Some of the design

goals specific to GFS are as given below.

» Redundant storage of massive amounts of

data on cheap and unreliable computers.
« It has to process huge numbers of requests

» GFS stores a huge number of files, totaling

many terabytes of data.
B. Processes

GFS servers are Stateful. They have to maintain
all the state information about the requests made

by the clients.

C. Fault Tolerance
In GFS, all data is triple replicated. When a chunk
server goes down, the master can always send

data requests to the replicas until the node is up

Journal of Himalaya College of Engineering

and running again. In the event that the master
fails, the system can easily select another node to
build a metadata list by scanning all chunk servers

and acting as master.

Hadoop Distributed File System (HDFS)

HDFS (Hadoop Distributed File System) is a
fault-tolerant distributed file system designed to
run on commodity hardware. HDFS is a file
system that allows high-throughput access to
application data and is well-suited to applications

with huge data collections.

Hadoop includes a distributed file system (HDFS)
that can store data across thousands of computers,
as well as a way to spread work (Map/Reduce
jobs) across those machines, allowing the work to
be done close to the data [8]. The architecture of
HDFS is master/slave. Large data sets are
automatically divided into chunks that are

maintained by multiple Hadoop nodes.
A. Goals

e As HDFS is designed for batch
processing rather than interactive use by
users, the emphasis is on high throughput
of data access rather than low latency of

data access.

e Detection of faults, quick and automatic
recovery from them is a core architectural

goal of HDFS.

e It should support tens of millions of files

in a single instance.

B. Processes

Volume: 1 Issue: 1

HDFS servers are Stateful. They have to maintain
all the state information about the requests made

by the clients.
C. Fault Tolerance

One copy is placed on one node in the local rack,
another on a different node in the local rack, and
the final replica is placed on a separate node in a
different rack, according to HDFS's placement
rules. If the local rack's initial node fails, a request
is forwarded to a different node in the same rack,
where the replica is located. If that node fails as
well, the request is sent to another node in a
different rack. Fault tolerance is achieved in
HDFS as a result of the use of replica placement

policies.

3. STUDIES IN DESIGN OF DFS

There has been a lot of research info various
designs. Only a few examples are mentioned in
this article. This section focuses on the
activities performed for unstructured data,
small picture storage, and the benefits of these
distributed file system designs. So, first, P2P
technologies will be
introduced in DFS design, followed by DFS
designs based on HDFS and GFS. Table 1

and Client/Server

outlines the many types of distributed file
system designs and benefits relevant to the

current study.

3.1 Related studies on P2P technology

Depending on the structure of the overlay
maintained by participating peers, peer-to-peer
networks are divided into two groups.

Unstructured architectures, such as the
pioneering Gnutella system, allow peers to

create their own message routing paths [9]. To

Journal of Himalaya College of Engineering

access a resource, each peer will send requests
to his wvirtual neighbors, effectively
overloading the physical infrastructure (at
least, this was the initial technique, which was
eventually superseded by more "clever"

routing algorithms).

DEFS Peers are structured in both topologies,
according to the DFS Architecture. A peer
layout that is similar to that described in is
discussed in. Because resource dependencies
and links between participating nodes might be
arbitrary, the DFS collaboration network
resembles an unstructured peer-to-peer design.
However, the overlay of namespace and
storage aggregation and distribution is
followed by a subset of requests. The location
of DFS users and resources is managed using a
Kademlia-based DHT shared by all peers in the
DFS universe. Work on peer-to-peer content
distribution networks (CDNs) and the Freenet
censorship-free data delivery overlay is also

relevant.

Distributed file systems are the forerunners of
most modern peer-to-peer and distributed file
sharing services, and as such have supplied the
tools and mentality required to imagine
contemporary global-scale data collaboration
infrastructures from the start [4]. Frangipani and
XFS are two of the most well-known early
distributed file system ideas. Frangipani uses a
two-layer method, separating file metadata from
actual storage (a shared virtual disk).

3.2 Related studies on Client/Server
technology for DFS Design

The majority of client/server applications fit

into one of two categories: file server, or

Volume: 1 Issue: 1

stateless, designs, and database styled
fransactional, or stateful, systems. Despite the
fact that many client/server systems do not
manage files or any other type of database,
most of them have a design that is fairly similar
to one of them [1]. Furthermore, there is a
significant middle ground consisting of non-
fransactional stateful distributed architectures
(including stateful file servers). These
applications are sometimes referred to as

"improved stateless" architectures [10].

For example, Microsoft's NTFS file system
appears to be stateful to the user, but it is
implemented as a "mostly stateless" system
that uses event notification mechanisms to
notify the client when events on the server that
may be important to it occur; the client quickly
rereads the changed data, and, with any luck,
applications running on it will not notice the
temporary inconsistency [11]. If one
understands the fundamental ideas behind
stateless system designs, a file system like this
can be thought of as starting with a stateless
approach and then cleverly adding
mechanisms that hide many of the common
issues found in stateless designs—an approach
that gives the Microsoft system significant
robustness. For example, the Web Services
architecture invites one to follow a similar

development path.

A study [11] presents a file system that keeps
file replications in separate network areas. In
the suggested system, they also construct a
load detecting module. The module will
monitor each file server's load and optimize

overall system performance. A distributed file

Journal of Himalaya College of Engineering

system called KIV-DFS is presented by [12].
The Google file system is incompatible with
mobile devices. The system is built on the
client-server model. Users can work with data

using the client module.

A distributed file system is presented in the work
by [6]. The Name Server is in charge of data
classification and storage allocation in this
system. The Name Server was previously utilized
to assist the Name Server's operations. A Data
Server is a form of image to save that is placed
beneath the Name Server. Data Servers are
unrelated, and they have no idea what type of
video is saved on the others. A fundamental
technique to managing photos is to define the data
and then use the descriptive information to carry
out the operation. The image data is described
using raw data, basic features, low-level features,
and semantic features. Image data is shown using
a tree structure. Raw data is the base node, and it
refers to image data files. Low-level properties
and key attributes of states are found in the middle
child of the root node. Image data aspects such as
color, texture, and geometry of images are
examples of low-level features. Attributes such as
name, kind, author, and creation time are all basic
aspects. The leaf node, which expresses semantic
properties such as a good writer, topic
explanation, and low-level features [8].

3.3 Related studies in DFS based on Google
File System

The Google File System is a scalable
distributed file system created and
implemented by Google for large distributed
data-intensive applications. It has fault

tolerance and gives great aggregate

Volume: 1 Issue: 1

performance to a large number of clients while
running on low-cost commodity hardware [9].
While it has many of the same goals as prior
distributed file systems, this design was
influenced by present and future observations
of application workloads and technology
environments, which differ significantly from
previous file system assumptions. As a result,
established design decisions have been
reexamined, and radical new design points

have been explored.

There are two replicas in the GFS: primary and
secondary. The data chunk that a chunk server
fransmits to a client is known as a primary replica.
On other chunk servers, secondary replicas act as
backups. Which portions are primary or
secondary is decided by the master server [12]. If
a client modifies the data in a chunk, the master
server notifies chunk servers with secondary
replicas that they must copy the updated chunk
from the primary chunk server in order to keep

the chunk in its present state.

3.4 Related studies in DFS based on HDFS

Hadoop is a free and open-source software
project [8]. Apache Hadoop has become a
prominent corporate cloud-based technology
applied as a whole ecosystem of services,
thanks to a considerable technology
investment supplied by Yahoo! Many
multinational organizations, like Facebook,
LinkedIn, Twitter, eBay, Samsung, I.P.
Morgan, AOL, and others, have successfully
implemented it [3]. The ecosystem includes a
number of tools (Hive, Pig, HBase, Oozie,
Zookeeper, Sqoop, Flume, Spark, Kafka,

Impala) that enable businesses to store,

Journal of Himalaya College of Engineering

process, and analyze large amounts of data,
provide real-time customer service, perform
various types of optimizations, machine
learning, ETL (extract, transform, load), and

other operations.

HDFS is a distributed file system that handles
files across the storage of a cluster. It's in
charge of data replication and fragmentation.
Depending on the file replication factor, large
files are split into numerous blocks, each of
which is replicated on multiple servers. This
ensures that data is accessible even if one or
more servers fail. The master-slave
architecture is used by the distributed file
system, which follows the "Write Once, Read
Many" principle. It's a distributed "keyvalue"
data storage system that's fault-tolerant and

designed to manage huge files.

Clover, a NameNode cluster file system based
on HDFS, is presented in the paper [9]. This
file system takes advantage of two key
features: an upgraded 2PC protocol that
enables consistent metadata updates across
many metadata servers, and a shared storage
pool that provides reliable permanent metadata
storage and facilitates distributed transaction
operations [9]. Experiments demonstrate that
by using quantized measurements, their system
may provide superior metadata expandability
ranging from 10% to 90% when each more
server is added, while maintaining equivalent
I/O performance Designed to work with big

data files [6].

HatS [5]is a multi-tiered storage system based on

the HDFS file system [7]. The DataNode

Volume: 1 Issue: 1

architecture is a significant difference between
hatS and HDFS. Each participating node in HDFS
[6] maintains a single DataNode instance, which
represents various storage devices, regardless of
their features such as supported I/O rates and
capacity. In hatS, on the other hand, each
participating node hosts many DataNode
instances, each of which represents a single type
of storage device. Liu Jiang and colleagues [7]
presented an optimization of a file system based
on small files that delivers higher performance. A
similar design with HDFS was presented by
Farag Azzedin [10], although NameNode is
distributed.

Journal of Himalaya College of Engineering Volume: 1 Issue: 1
Article Name Author (s) Publish Year | Pages | Advantages Name of
DFS
A High | Tzong-Jye Liu, | IEEE 2015 | 36-42 |[low cost, reliability, | NFS
Performance and | Chun-Yan scalability, improve the
Low Cost | Chung, Chia- overall system
Distributed File | Lin Lee performance
System
Distributed File | Lubos Second 2019 | 13-18 | Scalability proper for | KIVDF
System with Online | Mat&ka, Jifi | Eastern mobile devices, Increase | S
MultiMaster Safatik, European throughput, Increase the
Replicas Ladislav Regional security of the data,
Pesicka Conference mmproves the service
on the availability
Engineering
of Computer
Based
Systems
ASDF: An | Chien-Ming, 14th 2014 | 485- [Scalability, Reliability, | ASDF
Autonomous and [Wang, Chi- | [IEEE/ACM 493 Compatibility,
Scalable Chang Huang, | International extensibility, autonomy
Distributed File | Huan-Ming Symposium
System Liang on Cluster,
Cloud and
Grid
Computing
A Kind Of | DI LIU, SHT- | IEEE 2012 | 394- | mprove metadata | QFS
Distributed File | JIE KUANGI1 397 management, high
System Based On concurrency, storage
Massive Small efficiency, simple
Files Storage design, efficient design,
storage capacity,
scalability
The Hadoop | Konstantin IEEE 2010 | 1-10 | Scalability, improves the | HDFS
Distributed File | Shvachko, overall availability, all of
System Hairong Goals in DFS design

Kuang, Sanjay
Radia, Robert
Chansler

Journal of Himalaya College of Engineering

Volume: 1

Issue: 1

Distributed file | Shaojian Zhuo, | IEEE 2013 | 2231- | Reduce meta data, High
system and | Xing Wu, Wu | International 2234 | Speed access
classification for | Zhang and | Conference
small images Wanchun Dou | on Green

Computing

and

Communicati

on
hatS: A | Krish KR, Ali | 18th 2018 | 502- [Improve throughput , | Hats
HeterogeneityAwar | Anwar, Ali R. [[EEE/ACM 511 improve job completion
e Tiered Storage for | Butt International time, mmprove the
Hadoop Symposium utilization of the storage

on Cluster, device

Cloud and

Grid

Computing
Clover: A | Youwei Wang, | IEEE 2019 | 126- | Expandability, Clover
distributed file | iang Zhou, | International 134 bottleneck-less, no
system of | Can Ma, | Conference single point of failure
expandable Weiping on Cluster
metadata service | Wang, Dan | Computing
derived from HDFS | Meng, Jason

Kei

Towards a scalable | F. Azzedin IEEE 2017 | 155- [Highly available, Widely
HDFS architecture International 161 scalable, fault tolerant,

Conference

on

Collaboration

Technologies

and Systems

(CTS
The optimization of | L Jiang, Bing | the 3rd IEEE | 2015 | 912- | Increase the speed of
HDFS based on|Li, Meina | International 915 reading, reduce the read
small file Song Conference request, reduce the write

on Broadband request received by the

network and name node

Multimedia

Technology

10

Journal of Himalaya College of Engineering

4. RESULT

Big data is a term for a collection of data that can
be gathered, refined, managed, and processed
using standard software in a reasonable amount of
time. The definition of "size" in the context of big
data is always evolving and expanding. As a
result, a distributed file system should be able to
handle and process such a massive amount of
data. In Cloud and Grid computing, integrating
enormous dispersed storage systems to provide
large storage capacity is a critical and difficult

task.

Various distributed file system designs were
discussed in this article. A quick summary of how
we used Distributed File Systems to achieve our
goals using big data was offered. As a result, all
DFSs are used to process, store, and analyze
The
the

massive amounts of unstructured data.

Google File System exemplifies
characteristics required to run large-scale data
processing workloads on commodity hardware.
While certain design decisions are unique to our
situation, many others may be applied to data

processing tasks of equal scope and cost.

Although the speed of INetwork connectivity is
critical for HDFS performance, it is not the only
constraint. The data transfer speeds of hard drives
are also

crucial, especially in high-speed

situations. Networks that serve a specific
geographic area, such as a city or a metropolis. If
you are uploading or writing a file to the HDFS.
A data node, one of the replicas, hosts the
client.will almost certainly be saved on the same

data node.

11

Volume: 1 Issue: 1

REFERENCES

A. B. Patel, M. Birla, and U. Nair,
“Addressing big data problem using
Hadoop and Map Reduce,” 2012. doi:
10.1109/NUICONE.2012.6493198.

T.J. Liu, C. Y. Chung, and C. L. Lee, “A
high performance and low cost distributed
file system,” 2011. doi:
10.1109/ICSESS.2011.5982251.

S. Ghemawat, H. Gobioff, and S. T. Leung,
“The google file system,” in Operating
Systems Review (ACM), 2003, vol. 37, no.
5. doi: 10.1145/1165389.945450.

C.M. Wang, C. C. Huang, and H. M. Liang,
“ASDF: An autonomous and scalable
distributed file system,” 2011.
10.1109/CCGrid.2011.21.

doi:

K. R. Krish, A. Anwar, and A. R. Butt,
“HatS: A heterogeneity-aware

storage for hadoop.,” 2014.
10.1109/CCGrid.2014.51.

tiered
doi:

S. Zhuo, X. Wu, W. Zhang, and W. Dou,
“Distributed file system and classification
for small images,” 2013. doi:
10.1109/GreenCom-iThings-
CPSCom.2013.422.

J. Liu, L. Bing, and S. Meina, “The
optimization of HDFS based on small
files,” 2010.

10.1109/ICBNMT.2010.5705223.

doi:

K. Shvachko, H. Kuang, S. Radia, and R.
Chansler, “The Hadoop distributed file
system,” 2010. doi:
10.1109/MSST.2010.5496972.

Y. Wang, J. Zhou, C. Ma, W. Wang, D.
Meng, and J. Kei, “Clover: A distributed
file system of expandable metadata service
derived from HDFS,” 2012. doi:
10.1109/CLUSTER.2012.54.

Journal of Himalaya College of Engineering

[10] F. Azzedin, “Towards a scalable HDFS
architecture,” 2013. doi:
10.1109/CTS.2013.6567222.

[11] D. Liu and S. J. Kuang, “A kind of
distributed file system based on massive
small files storage,” 2012. doi:
10.1109/ICWAMTIP.2012.6413521.

[12] L. Matéjka, J. Safafik, and L. Pegicka,
“Distributed file system with online multi-
master replicas,” 2011. doi:
10.1109/ECBS-EERC.2011.12.

12

Volume: 1

Issue: 1

